Selection and Application Guide for SB Control and Transfer Switches

Control and Transfer Switches

Multi-stage-versatile-reliable

 nstruction Book-GEH-2038
Renewal Parts-GEF-4167

The SB-1 Switch
-rotary, cam-operated, slightly larger than the SBM switch and capable of more design flexibility.' Can be independently mounted and housed'. Many common types warehoused.

Instruction Book-GEH-908
Renewal Parts—GEF-2357

The SB-9 Switch

-a heavier-duty switch than the SB-1for applications requiring unusually high numbers of repetitive operations, but otherwise similar in optional features

Instruction Book-GEH-908
and design capability.
Renewal Parts-GEF-3481

The SB-10 Switch
-in addition to the rotary operation like the SB-1 switch; the SB-10 is capable of opening and closing contacts with a lateral push or pull of the handle.

Instruction Book-GEH-908
Renewal Parts-GEF-3482

The SBE Switch

-this switch may not only be manually operated locally, but may also be electrically operated remotely.

Instruction Book-GEK-99289
Renewal Parts-GEF-

Introduction

This publication provides descriptive, technical, selection and ordering information on control and transfer switches manufactured by General Electric Company.

To aid selection and specification, general arrangements and contact diagrams are included for the many models of the standard switches described on the opposite page. Several standard circuits are illustrated for the common applications such as circuit breaker control and ammeter-voltmeter transfer. Select the model which applies and order by model number only, using the appropriate ordering guide. If the standard switch is satisfactory except for some minor exception, specify the exception along with the appropriate catalog number.

If a standard model does not meet your application follow the ordering instructions given in this publication to specify the functions you need, or order by "similar to... except (state the exception). Use one of the following forms to place your order:

Form GED-3933-for SBM switches only
Form GED-3934—for SB-1,-9,-10 switches
Part 1—Standard features
Part 2—Optional features
For convenience, copies of these forms have been included in this publication which can be reproduced in lieu of the forms.

GE Meter and Control 205 Great Valley Parkway Malvern, Pa. 19355

Contents

PAGE
TYPE SBM SWITCH FEATURES 5
TYPE SB-1 SWITCH FEATURES 8
TYPE SB-9 SWITCH FEATURES 9
TYPE SB-10 SWITCH FEATURES 10
SPECIAL FEATURES SB-1, SB-9, SB-10 11
OPTIONAL FEATURES -
TANDEM SWITCHES 14
PULL-TO-TURN 14
PAILADIUM CONTACTS 14
LOCK TYPE SWITCHES 14
SBE ELECTRIC OR HAND OPERATED CAM ACTION AND LIMITATIONS (SBM, SB-1, SB-9, SB-10) 16
OVERLAPPING CONTACTS
(SBM, SB-1, SB-9, SB-10) 18
REMOVABLE HANDLES
(SBM, SB-1, SB-9) 20
TEMPERATURE METER SWITCHES (SB-1) 22
OUTLINE DIMENSIONS (SBM, SB-1, SB-9, SB-10) 23
OUTLINE DIMENSIONS FOR TANDEM SWITCHES 27
OUTLINE DIMENSIONS FOR LOCKED SWITCHES 28
CONTACT DIAGRAMS FOR SBM SWITCHES 29
CONTACT DIAGRAMS FOR SB-1 SWITCHES 43
ORDERING GUIDE FOR SBM SWITCHES 60
ORDERING GUIDE FOR SB-1,-9,-10 SWITCHES 63
FORM GED-3933, SPECIFICATION FORM, TYPE SBM SWITCHES 69
FORM GED-3934, PART 1. SPECIFICATION FORM, SB-1 SWITCHES, STANDARD FEATURES 70
FORM GED-3934, PART 2. SPECIFICATION FORM, SB-1 SWITCHES, SPECIAL FEATURES 71
FIELD MODIFICATION INSTRUCTIONS FOR THE TYPE SBM CONTROL SWITCH 72
NOMENCLATURE GUIDE, TYPE SBM SWITCHES 74
NOMENCLATURE GUIDE, TYPE SB-1 AND SB-9 SWITCHES 75

The SBM Compact Cam-operated

- Control and transfier
 - For control panels and switchboards
 - Up to 600 volts

The SBM is a compact, positive acting switch for control and transfer service on panels and switchboards, 600 volts and under. Up to 10 stages, 2 contacts per stage can be provided, with independent action, both electrically and mechanically, through eight positions.

Ideal For Switchboards-

—The SBM switch is especially adaptable for switchboard applications where space is at a premium.
The SBM switch is normally supplied for mounting on panels up to $1 / 4$ inch thick. If requested, it can also be supplied for mounting on panels of one or one and a half inches.

Compact design of the SBM switch permits close center-to-center line mounting distances and, at the same time, easy access to the terminals for wiring. Also, since the switch is enclosed, there is no need for clearance at the back of the panel to remove a
separate cover. This further reduces space requirements.

Ratings

The SBM switch is rated for a mechanical life of 500,000 operations. The electrical ratings are 600 volts ac or dc, 20 amps continuous or 250 amps
for three seconds. The interrupting rating depends upon the voltage and character of the circuit. The table below illustrates the interrupting duty of a single contact and contacts in series when various conditions exist on a circuit.

SBM is recognized under the component program of Underwriters' Laboratories, Inc.

Interrupting Rating (amperes)

Circuit Volts	Non-inductive		Inductive	
	Number of Contacts			
	1	2 in series	1	2 in series
24 dc	10	30	8	25
48 dc	8	25	6	18
125 dc	5	15	4	10
250 dc	1	3	1	2.5
600 dc	0.4	0.8	0.3	0.7
115 ac	40	75	24	50
230 ac	25	50	12	25
460 ac	20	30	10	20
600 ac	15	25	8	12

Construction Features

Escutcheons

Two basic types of escutcheons are available: the standard and the target. The standard type shown on the left is a molded black phenolic material with white lettering for clear reading of the positions. A target type escutcheon, shown in the middle, is normally furnished on breaker control switches. An aluminum front plate houses the target mechanism with a window in the center to show green for the trip position, red for the closed position, and black for the pull-to-lock position. The
target has a slip action so that it will remain green when the handie returns to NORMAL from the TRIP position, and red when it returns from the CLOSE position. This shows the operator the last operation of the switch.
On the right a modified standard is shown with keyways for use with a removable type handle.
Aluminum circuit designation plates are available for all three types.

PISTOL GRIP

LEVER

Handles

Four types of molded black phenolic handles shaped for easy gripping are available with the SBM switch: pistol grip, oval, knurled, and lever. Any of the standard handles except the lever, may be adapted for removable handle keying. A fixed handle may be easily removed for replacement by a screw in the front of the handle. A white
pointer, furnished with the handles (except the lever) and mounted near the escutcheon, give a clear identification of the position that the handle is in. For match and line up with SB-1 switches, type SB-1 pistol grip, oval, knurled, and round handles can be furnished for use with SBM switches.

Cams and Contacts

The silver to silver contacts of the SBM switch are of double-break design, as seen at left, which reduces arcing and subsequent pitting of contacts. Each contact is operated by a double surface cam, one surface for closing, the other surface for opening. This construction provides opening and closing action not dependent on springs.

Keyed Escutcheons and Removable Handles

The removable handle commonly used in synchronizing switches can be made to be removed in any one of the eight positions. There are three keys set in front of the handle, so that they fit the designated keyways in the escutcheon in a desired position. The escutcheon can be keyed so that a handle is interchangeable or non-interchangeable with another switch. If this is desired, the catalogue number of the other switch and the position in which the handle is to be removed must be given. The removable handle is not fumished with the switch, but as a separate item.

Slip Cams

The slip cam is basically used on breaker control switches. The slip action enables a contact to remain closed or open after returning to the nomal (12 o'clock) position from either the CW or CCW positions.

Positioning

Contacts of the SBM switch are positively positioned by a detent wheel mounted on a square shaft and acted upon by a springloaded roller arm. If the shaft of the 45° switch is not rotated more than one-half the distance between positions, it will snap back to its prior position. If rotated more than half the distance between positions, it will snap to the next position. The 90° switch has this same positive detent action when in position, but the snapping action is not as prominent. Up to eight positions are available with 45° or 90° between positions.

Terminal Connections

Terminal connections are brought to the corners of each stage, allowing screw connections to be made over a large angle. This angular displacement of connection points allows the switches to be mounted on three-inch centers or less.

Jumpers

Jumpers are furnished assembled, where required, on all standard listed switches. For special switches or unlisted switches, separate jumpers can be ordered.

Contacts Handle End.	Positions			
		3	2	1
	1			X
\multirow{2}-$1 \mapsto 0-1 \mapsto$	2		X	
$\square-1 \mapsto$	3	X	X	

Break-Before-Make Contacts

Contacts on SBM switches are normally non-overlapping (break-before-make). This sequence is illustrated above, which shows that contact No. 1 opens before contact No. 2 closes.
Another normal function is illustrated by contact No. 3, which is shown closed in two adjacent positions. When switching between these positions, this contact will always remain closed.

Spring Action

Torsion springs return the switch handle to or towards the 12 o'clock or No. 3 position. The travel of the handle is limited to 90° to either side of position 3. The switches may be furnished with spring return both ways, or only one way, with maintaining action in the opposite direction. You can also have spring return from position No. 1 (9 o'clock) to position No. 2 (10 o'clock) and/or spring return from position No. 5 (3 o'clock) to position No. 4 (2 o'clock) with maintained action in the other positions. Torsion springs are housed in the rear half of the positioning chamber. There is no need to modify the chamber to accommodate the springs.

Overlapping Contacts

Overlapping contacts (make-before-break) contribute to the versatility of the SBM switch.
Typical overlapping contacts are shown on model switch 10AA009. The asterisk (*) indicates an intermediate (non-feel) position and shows the contacts overlapping. In the 10AA009 when turning from the OFF position to reading position " 1 " (Phase 1), contact 2 closes at the intermediate position and before contact 1 which remained closed through the intermediate position, opens.

Pull-To-Lock

A pull-to-lock mechanism is designed for spring-return switches. When the handle is turned to the 9 o'clock position, it can be pulled out and locked in that position. When the handle is pushed in, the handle spring returns to the normal position. This pull-to-lock feature does not actuate contacts, but merely prevents the spring return of the handle.

Add-A-Stage

A one-half inch exentsion is provided on the rear of all switches with one to eight stages. This extension enables a maximum of two additional stages to be easily and economically coupled to the existing switch in the event more contacts are required. Maximum number of stages, including Add-A-Stage unit is 10 (20 contacts).

Type SB-1 Switch With Cover Removed

SB-1 Switch Provides Flexible, Dependable Control for Electrically-operated Equipment

Type SB-1 switches are rotary, camoperated devices for the control of electrically-operated circuit breakers, small motors, magnetic switches, and similar devices, and for the transfer of meters, instruments, and relays.
The Type SB-1 switch has molded cams assembled on a square shaft to prevent slipping. Rotation of the shaft moves cams directly against contact arms so that positive high pressure results at the contact. Contact action is not dependent on springs.

Silver-To-Silver Contacts
Silver-to-silver contacts operate with

a positive wiping action to provide lowresistance current flow. Contacts can be removed independently of other switch parts. Barriers between adjacent contacts prevent arcing between circuits.
The switch, complete with cover, can be obtained with up to 16 stages, two electrically separate contacts per stage and for mounting on panels from $1 / 8^{\prime \prime}$ to 2 " thick. The panel thickness should be specified when the switch is ordered; if it is not, the switch will be furnished for mounting on panels up to $3 / 16^{\prime \prime}$ thick. The SB-1 switch, which has a standard insulating cover, meets NEMA I requirements for panel mounting.

Standard Parts

Flexibility and low initial cost are the results of standardizing a basically simple design. Standard SB-1 switches are available for most applications. For special applications, switches can be built from standard parts. The longwearing cams, positive wiping action of silver-to-silver contacts, and positive contact opening and closing action all contribute to a switch which is high in quality and will give you many years of dependable service.

SB-9 Control Switch Designed for Highly Repetitive Service

The Type SB-9 switch for heavy-duty service is used where repetitive operations run into many thousands per week. The SB-9 switch is similar to the SB-1 except that it has a more positive positioning device, better insulation to ground, and more substantial bearings. The contact development diagrams for specific applications follow the same general form as for the SB-1.

Ratings

Type SB-1, 9 \& 10 switches are rated 600 volts, 20 amps continuous, or 250 amps for three seconds. The interrupting rating depends upon the voltage and character of the circuix, and the number of contacts connected in series, as indicated in the table. Contacts can be paralleled when current exceeds 20 amps.

Circuit Volts	Non-Inductive Circuit						Number of Contacts			
	1	2 in Series	4 in Series	1	2 in Series	4 in Series				
	Interrupting Rating in Amperes									
24 D-c	6	30	\ldots.	4	20	30				
48 D-c	5	25	40	3	15	25				
125 D-c	2.5	11	25	2	6.25	9.5				
250 D-c	.75	2	8	.7	1.75	6.5				
600 D-c	.25	.45	1.35	.15	.35	1.25				
115 A-c	40	75	\ldots.	24	50	\ldots.				
220 A-c	25	50	$\ldots .$.	12	25	40				
440 A-c	12	25	\ldots.	5	12	20				
550 A-c	6	12	\ldots.	4	10	15				

*Values of inductance equal to that of the average trip circuit. For circuits having high values of inductance, refer application to your General Electric representative for recommendations.

Type SB-10 Switch Without Cover

Lateral contacts give SB-10 switch increased versatility

The SB-10 Switch

The SB-10 switch is similar to the SB-1 switch, except for the addition of lateral
contacts. The lateral contacts, which provide two electrically separate and mechanically independent switches in

Lateral action of SB-10 switch	
One Lateral Stage	
Pull to open contacts 1-2 Pull to close contacts 1-2	. Maintaining or spring return in or out Maintaining or spring return in or out
Two Lateral Stages	
Pull to open contacts 1-4 Pull to close contacts $1-$ Pull to open contacts 1-2 and close 3-4	. Maintaining or spring return in or out . Maintaining or spring return in or out . Maintaining or spring return in or out
Three Lateral Stages	
Pull to open contacts 1-6 Pull to close contacts 1-6 Pull to open contacts $1-4$ and close 5-6. Pull to open contacts 1-2 and close 3-6.	Maintaining or spring return in Maintaining or spring return out Maintaining or spring return in . Maintaining or spring return out
Four Lateral Stages	
Pull to open contacts 1-8 Pull to close contacts 1 Pull to open contacts 1-6 and close 7-8. Pull to open contacts 1-2 and close 3-8 Pull to open contacts 1-4 and close 5-8	Maintaining or spring return in Maintaining or spring return out Maintaining or spring return in Maintaining or spring return out . Maintaining or spring return in or out
Pull to open denotes the same contact action as push to close. Pull to close denotes the same contact action as push to open.	

one device, are located at the handle end of the switch. The lateral contacts operate independently of the rotary contacts. There may be as many as four stages of lateral contacts (two contacts per stage).
The lateral action capabilities of SB-10 switches are given in the table. The maximum number of stages, including rotary contacts, is 12. Lateral contacts on the same stage must open and close together.
There are only two lateral positions: IN or OUT. Contacts may be closed in either position. A spring can be furnished so that one of the positions is momentary.
Rotary contacts may have a spring to return the switch to neutral rotary position. When a switch is furnished with both lateral and rotary spring return, the lateral spring can be loaded in the neutral rotary position only.
Interlocks may be provided so that the lateral action can be made in one or more rotary positions. Interlocks may also be provided to prevent rotary action in the IN or OUT positions, or to permit rotary action in both the $\mathbb{I N}$ or OUT positions.
The same types of fixed handles and escutcheons used on SB-1 switches may also be used with the SB-10 switches. Drilling dimensions are the same as the SB-1.

Special Features se-1, 9, 10

Handles

Seven different types of fixed handles are shown. The handles are designed for durability, comfortable grip, and pleasing appearance. An arrow is embedded in the oval and pistol-grip handles for visual aid in positioning. A white pointer is furnished with the knurled and round handles. To prevent inadvertent operation of equipment by unauthorized persons, a removable type handle is available for the SB-1 or SB-9 switches. The removable handle is keyed to fit the escutcheon in a specific position. All but the radial and the lever type handles can be furnished with keyed shanks as removable type handles. The handle can be removed in any one or two positions, and such positions should be specified when the switch is ordered.

Escutcheons

The escutcheon is made of molded black phenolic material with white lettering for clear reading of position labels.

Types of escutcheons:

1. The standard type, C or E, or F above, is used when all positions are at the horizontal or above.
2. The round type, A or D above is used when there are positions below the horizontal.
3. A target-type escutcheon, $B \& G$ above, normally used on breaker control switches, has a red and green target to indicate the last position to which the switch was turned. Pull-to-lock target escutcheons are shown to the right. (Note that maximum throw is 75 degrees counter-clockwise and 45 degrees clockwise).
4. Both the standard and the round type escutcheons can be furnished with keyways to interlock with the removable type handles, so that the handle is removable only in a specific position.

A separate circuit designation plate, when furnished, is mounted at the top of the escutcheon and is easily removable.

Positions

The maximum number of positions is 12. Position locations and throws are available as shown.

Handle positions

A

B

Special Features (conv)

Contacts and Jumpers

Rotary contacts on SB-1, 9 , and 10 switches are normally break-beforemake. Over-lapping contacts (make-before-break) are available and are used basically in ammeter switching applications. Slip contact operation is available for breaker control application. Moving contacts are cam operated for positive opening and closing (Fig. 10A). Stationary contacts are assembled on a common support, mounted at the top of the switch for easy replacement. Three types of stationary contacts are available (Fig. 10B).
A. Electrically common with center binding post, which affords single-break, single-pole, double-throw operation for two electrically common circuits.
B. Electrically separate. Each stage affords single-break, single-pole service for two electrically separate circuits.
C. Electrically common without a center binding post, affording two contacts for double-break action.
Greater switch flexibility can be achieved by use of jumpers (Fig. 10C). Four different types are illustrated. When jumpers are ordered with the switch, they are supplied unassembled without additional cost. They may also be purchased separately and assembled on existing switches.

Spring Return Action

Spring return can be adapted to any SB-1, 9, and 10 switch providing these limitations are adhered to:

1. The handle must return to or toward the 12 o'clock position, but not pass it. 2. The maximum throw is 90° to either side of the 12 o'clock position.
2. You cannot have a maintained position past a spring return position. Example: if spring return from pos. 2 to pos. 3 is desired. pos. 1 cannot be a maintained position. However, the functional equivalent can be obtained by specifying a pull-to-lock action in place of the maintained position.
Spring return from both directions to NORMAL or spring return with maintained action can be provided on the same switch.
Example:
A. Spring return from position 1 and 2
to 3 maintaining in positions 3,4 and 5 or spring return from 5 to 4 to 3 maintaining in positions 1, 2 and 3.

B. A five position switch can be furnished with partial spring return from positions 1 to 2 and/or 5 to 4 with maintaining action in the remaining positions (SB-9 only).

Pull-To-Lock

A pull-to-lock may be added to lock the switch against spring return action. Locking is accomplished by pulling the handle out in the pull-to-lock position to engage a latch which arrests the spring return. The switch will remain in the locked position until the handle is pushed in. Note. This pull-to-lock feature does not actuate contacts when pulled.

The following are standard pull-to-lock combinations available with a standard target type escutcheon.
A. Spring return from all positions to NORMAL except when locked, pull handle to lock at $75^{\circ} \mathrm{CCW}$.
B. Spring return from $45^{\circ} \mathrm{CW}$ and CCW to NORMAL, pull to initiate locking at 45° CCW then turn to $75^{\circ} \mathrm{CCW}$ and pull-to-lock.
C. Spring return from $45^{\circ} \mathrm{CW}$ and CCW except when pulled-to-lock at $45^{\circ} \mathrm{CCW}$. Special pull-to-lock switches can be furnished; however, spring return action from the pull-to-lock position is required.

Optional Features sb-1, 9, 10

Püll-Tö-Turn

A pull-to-turn feature can be incorporated in a SB-1 or SB-9 switch to prevent accidental operation. The handle is locked against turning when it is in the "in" position and must be pulled out to unlock and turn to the selected positions; it is equipped with a lateral spring that pulls the handle to the "in" position.
The handle can be locked against turning in one or more positions, or can be free to rotate between certain positions while in the "in" position.

Rotary spring action is not recommended with "pull-to-turn" because the lateral spring may not always overcome the rotary spring and automatic return to neutral may not always occur.

, Push-To-Turn

The "push-to-turn" feature is almost the exact opposite of the above-shown "pull-to-turn" feature, and the same restriction as to the use of rotary spring return applies.

Palladium Contacis

Available for temperature meter switches. Palladium contacts have a constant resistance factor which is necessary because calibrated leads are normally used in temperature meter circuits. Silver contacts would result in a variable resistance factor and cause fluctuations in meter readings.

Locks

Two different types of locks are available. Each allows the switch to be locked in one or more positions. One lock is built into the operating handle. The other lock is separately mounted on the panel above the switch, and when necessary, can be coordinated with a Kirk key-interlock scheme.
When it is necessary to lock switches in more than one position, a 45-degree space must be provided between adjacent locking positions. Therefore, eight is the maximum number of lock positions that can be furnished.

Hand And Electrically Operated Switch Type SBE

DESCRIPTION

The SBE switch is basically a hand or electrically operarted SB-1 switch. The electrical operation is accomplished by the use of a high-torque vdc motor, regulated by the use of an electronic controller, and attached to the switch by a clutch mechanism.
The SB-1 switch portion consists of up to twelve customer-usable, silver to silver, cam operated contacts with a positive high pressure, self-wiping action. See Figure 2 for typical contact arrangement.
The SBE is available for mounting on panels $1 / 16^{\prime \prime}$ to $1 / 8^{\prime \prime}$ thick.

APPLICATION

SBE switches can be used in place of the manual-only circuit breaker control switches which can allow remote SCADA supervisory control. Even though the SBE switch is longer than the standard SB-1 breaker control switch, the panel space for either device is the same. Therefore, retrofitting manual-only locations with remote control is relatively easy.

A typical contact wiring diagram is shown in Figure 2. Additional contacts can be used with a white indicating light or alarm to indicate a protective (not operator) trip. Also provided are contact to be used with an automatic recloser interlock circuit.

This same switch may also be used, with different position engraving, for operation of motor-operated disconnect switches, small motor contactors, and similar bi-directional devices. The application should be checked for operation with a contact dwell time of 1 second in each direction (CW and CCW) when the SBE is operated electrically.

BURDENS

For 125 VDC Motor at 150 VDC:

- 1 amp for 200 ms
- 0.7 amps for the second dwell period

RATINGS

Operating Range of 125 VDC Motor -78.5 to 150 vdc
 Contact Arrangement

CONTACT RATING

$\begin{aligned} & \text { CIRCUIT } \\ & \text { VOLTS } \end{aligned}$	NON-INDUCTIVE CIRCUIT NUMBER OF CONTACTS		
	1	$\begin{gathered} 2 \\ \text { IN } \\ \text { SERIES } \end{gathered}$	$\begin{gathered} 4 \\ \text { IN } \\ \text { SERIES } \end{gathered}$
24 DC	6.0	30.0	
48 DC	5.0	25.0	40.0
125 DC	2.6	11.0	25.0
250 DC	0.75	2.0	8.0
600 DC	0.25	0.45	1.35

INDUCTIVE CIRCUIT NUMBER OF CONTACTS		
	2	4
1	IN	IN
	SERIES	SERIES
4.0	20.0	30.0
3.0	15.00	25.0
2.0	6.25	9.5
0.7	1.75	6.5
0.15	0.35	1.25

115 AC	40.00	50.0	
220 AC	25.00	50.0	
440 AC	12.00	25.0	
550 AC	6.00	12.0	

24.0	50.0	
12.0	25.0	40.0
5.0	12.0	20.0
4.0	10.0	15.0

The interrupting ratings of the contacts vary with the inductance of the circuit. The values given above, for $d c$ inductive circuits, are based on the average trip coil currents.

The contacts will carry 20 amps continuously or 50 amps for 1 minute. The contacts will close on 50 amps for voltages 600 volts or less.

Fig. 3. Typical Control Circuit with SBE (286A3555)

Cam Action and Limitations

Fig. 1. Operating cam for $S B-1,-9$, and -10 switches

Fig. 2. Composite view of contacts and cams

Fig. 3. Individual arrangements of cams in Fig. 2

Fig. 4. Contact arrangement, back view

The operating cam of SB-1, -9, and -10 switches is based on a 30 -degree cut to each side of the center (Fig. 1). A standard-profile cam will fully open or close a contact in 30 degrees, making or breaking 15 degrees from the fully open or fully closed position.

Fig. 2 is a composite view of contacts and cams assembled on a stage of a switch. This figure shows that odd-numbered contacts are on the right side of the switch (viewed from the front), and are closed by the "C" cam. Even-numbered contacts are on the left side, and are closed by action of the " A " cam. Both contacts are opened by the " B " cam.

Fig. 4 is the contact diagram for Fig. 2, with Fig. 3 showing the individual arrangement of cams.

One cam limitation must be considered when the switch rotates 180 degrees or more. Referring to Fig. 3 , you see that when cam B is rotated 180 degrees, the same relationship occurs between the periphery of Cam B and the contact mechanism of Contact No. 1 as occurred between the periphery and contact mechanism of Contact No. 2 before rotation; therefore, whatever happens to one contact at any point in the switch rotation must happen to its companion contact in the same stage when the switch is rotated 180 degrees. Fig. 5 shows the diagram of an unworkable and a correct arrangement.

When contacts on the same stage cannot be arranged to avoid this 180-degree cam limitation, one contact per stage is used (See Fig. 6). On five-position switches, 37-1/2 degrees can be used instead of 45 degrees, to avoid this limitation.

SLIP CAMS

Slip cams increase the flexibility of the switch. They allow a contact to be closed in the NORMAL position after returning from either the CW or CCW position, and also to be open in the NORMAL position after returning from the opposite direction. This action is accomplished by allowing the cam to slip 45 degrees as shown in Fig. 7. Once the shaft actuates the cam, the shaft will then slip 45 degrees in the opposite direction without actuating the cam.

This type of action is commonly used for circuit-breaker control applications. Fig. 8 shows a breaker control switch, Model 16SB1B2, which has slip action on Contacts 7 and 8. With this slip action, there are some limitations. Three of these limitations and how to avoid them are shown. Limitation No. 1 does not apply to the SBM switch because of the independent cams for each contact.

Cam Action and Limitations (Cont'd.)

INCORRECT

CONTACTS HANDLE END		POSITIONS (BACK VIEW)							
		8	7	6	5	4	3	2	1
OHTO O-H1	1								X
	2							X	
3	3						X		
	4					X			
$5^{5} 110006$	5				X				
	6			X					
${ }^{7}-1000-10^{8}$	7		X						
	8	X							

CORRECT

CONTACTS HANDLE END		POSITIONS (BACK VIEW)							
		8	7	6	5	4	3	2	1
OHKO OH2	1								X
	2				X				
${ }_{3}^{3} \text { HHO OHA }$	3							X	
	4			X					
${ }^{5}-1 \mathrm{O} \text { OH } \mathrm{O}^{6}$	5						X		
	6		X						
$7^{7}-110 \text { O-1188 }$	7					X			
	8	X							

ESCUTCHEON (FRONT VIEW)

Fig. 5. Diagram of unworkable and correct arrangement

ESCUTCHEON
(FRONT VIEW)

CONTACTS handle END		POSITIONS (BACK VIEW							
		8	7	6	5	4	3	2	1
OHOO	1					X	X		x
HO-HO									
	4	X	X						
O-HO-	5	X			X				
Ho-Ho									
	8				X	\times			x

Fig. 6. Contact arrangement to meet cam limitations

Fig. 7. Diagram showing 45-degree slip action of cam

CONTACTS HANDLE END		POSITIONS			
		Close	$\begin{array}{\|c\|} \text { Norm } \\ \text { of ter } \\ \text { close } \end{array}$	Norm after trip	Trip
$\begin{array}{\|l\|l\|} \hline 1 & \mathrm{H}^{2} \\ \hline \end{array}$	1	\times			
	2				\times
	3	\times			X
	4	\times			
H^{5}	5		\times	\times	
OH^{7} OH\%	7	\times	x		
	8	X	X		

Fig. 8. Breaker control switch model 16SB1B2
(INCORRECT)

(CORRECT)

(INCORRECT)

	3	$3 N$	$2 N$	2	1		
1	OHOO OHOO	1			X	X	
	2			X	X		

(CORRECT)

			N	2N	2	1
	1			\times	\times	x
OHO O-H1O	2			\times	\times	x
	3		\times	\times	\times	
OHO O-1HO	4		\times	\times	\times	

Limitation No. 2 (SBM, SB1, -9 \& -10)
On a 4 -position pull-to-lock switch the slip contact cannot be closed in the 2 N and 2 positions (As shown in the top diagram) without closing in position 1. To accomplish this a stage is added, and the contacts are connect in series as shown in the bottom diagram.
(INCORRECT)

Limitation No. 1 (SB-1, -9 \& -10)
A slip contact and standard contact cannot be on the same stage, as shown in the top diagram.

A stage must be added and contacts split up, as shown in the bottom diagram, one contact per stage. (Does not apply to SBM)

Limitation No. 3 (SBM, SB-1, -9 \& -10)
A contact cannot be closed in the normal after position without also closing in the position itself, as shown in the top diagram. To accomplish this, a stage must be added and the contacts set up as shown in the bottom diagram, with the contacts placed in series by jumpers. Jumpers required are shipped loose with the switch.

Overlapping Contacts

general

Contacts on Type SB switches are normally non-overlapping (break-before-make). This sequence is illustrated in Fig. 10 which shows that Contact No. 1 opens before Contact No. 2 closes, when turning from Position 1 to Position 2. Another normal function is illustrated by Contact No. 3, which is shown closed in two adjacent positions (Positions 2 and 3). When switching between these positions, the contact will always remain closed. There are some circuits where this action is not desired, such as switching current transformers to an ammeter. Here, the contacts must overlap (make-before-break) to prevent damaging the meter.

SBM SWITCH

To get this overlapping action on the contacts, 90 degrees between positions is required. Figure 11 illustrates an ammeter switch (similar to Model 10AA009) with overlapping contacts. The overlapping action takes place in the intermediate positions (Positions 2, 4, 6, and 8). The inter-
mediate position is identified by an " X " in the block above this position in the operating requirement table. Contacts 1 and 2 are shown overlapping in the intermediate Positions 4 and 6. Contact 2 is shown making in intermediate Position 4 before Contact 1 breaks, when going from Position 3 (OFF) to Position 5 (PHASE 1), and Contact 1 will make before Contact 2 breaks, when going from Position 5 to Position 7.

Figure 12 illustrates an ammeter switch for three independent current transformers (similar to Model 10AA013). This switch also has overlapping contacts and intermediates at Positions 2, 4, 6, and 8; however, the overlapping action takes place between the intermediate position and the actual position. The " X " on the line between the positions of the contacts identifies this action. When turning from Position 5 (PHASE I) to Position 7 (PHASE 11), Contact 1 makes before Contacts 2 and 3 break. Also, Contact 2 and 3 break before Contacts 4 and 5 make, and Contacts 4 and 5 make before Contact 6 breaks. All this action takes place within the 90
degrees between positions, by use of a special cam.

SB-1, -9, AND-10 SWITCHES

Basically, the overlapping action is the same as with the SBM switch, but it is not limited to positions which are 90 -degrees apart.

To get a make-before-break action, as shown in Fig. 13, a minimum of $371 / 2$ degrees between positions is required. To get a make-before-break as shown in Fig. 14, a minimum of 60 degrees is required. The flexibility of the SB-1, -9 , and -10 switch allows the combination of $37 \frac{1}{2}$ degrees and 60 degrees in the same switch to give you an ammeter switch which reads as many as six, independent, current transformers with either 1 or 2 OFF's (see Fig. 15).

A special contact sequence which requires a contact to close in adjacent positions, but to open momentarily between them, is shown by Contact 1 in Figure 16. A minimum of 60 degrees between positions is required. When less than 60 degrees is required, use two contacts in parallel, as shown in Fig. 17.

AMMETER	
OFF	
3	
2	

Fig. 10. Typical non-overlapping
(break-before-make) sequence

AMME TER	
OFF	
3	

Fig. 11. Overlapping contacts for SBM ammeter-type switch connected at end of secondary

Fig. 12. Overlapping contacts for SBM ammeter-type switch, with three independent circuits

Fig. 13. Overlapping contacts for SB-1 ammeter-type switch connected at end of secondary (two current transformers)

Overlapping Contacts (Cont'd.)

AMMETER	
2	
1	

CONTACTS HANDLE END					OSITI	10	NS		
		3	*	*	* 2	*	*	*	* 1
$0^{1}-11-0-11^{2}$	1	X	X	X	X \times	X	X	X	
	2								$x \times$
S^{3}	3								X
$5+1 \ldots-1 h^{6}$	5		X	X	x	X	X		x
	6				$\times \times$	X			
$8^{7}-1$	7				XX	X			
$9-11-1+0$	9			X	X ${ }^{\text {X }}$	X	X		XX
	10	X	X						
$\mathrm{O}^{11}-110$		X	X						

Fig. 14. Overlapping contacts for SB-1 ammeter-type switch, with three independent circuits

Fig. 15. Overlapping contacts for SB-1 ammeter-type switch, with six independent circuits

CONTACTS HANDLE END		POSITIONS											
		*	6	*	5	*	4	*	3	*	2	*	1
	1		X		X		X		X		x		X
$0-110$													
3	3												X
$\bigcirc 11-0$	4						X						
5 6 6	5										X		
-11-0	6				x								
7 7 8	7								X				
$0-110$	8		X										

Fig. 16. Special contact sequence which requires one contact to be closed in every handle position, but to open momentarily when switching

Fig. 17. Special contact sequence which requires one contact to be closed in every handle position, but to open momentarily when switching; however, when less than 60 degrees between positions is required, two sontacts are connected in parallel

CONTACTS HANDLE END		POSITION - BK.VIEW								
		8	7	6	5	4		3	2	
$9 \mathrm{OHO} \mathrm{O}^{-1 / 9}$	1	X		X		X				
	2	X		X		入				
-110	3		X		\times			-		x
	4		X		X			入		X

To prevent operation of equipment by unauthorized persons, switches with removable handles are available. The handle is keyed to a specific escutcheon, to be inserted and removed in a designated position. Handles can also be mutually keyed to other escutcheons, so that they are either interchangeable or non-interchangeable with other switches.

This feature is available for SBM, SB-1, and SB-9 switches, but ordering procedures differ.

SBM SWITCHES

Fig. 18. SBM switch keyed escutcheon with eight available keyway locations. Keyways 1-3-5 are shown

The keyed escutcheon on the SBM switch (Fig. 18) has eight possible keyway locations. Three are normally used and are assigned by the factory. The choice is influenced by several factors:
a. If the handle is to be interchangeable with that of another switch, the position in which each handle is to be removeable must be considered.
b. If the handle is to be non-interchangeable, the keyways assigned to other removeable handles in the same panel must be considered.
c. If no special instruction is given by the customer when he orders, the factory will assign keyways at random; if more than one SBM switch has a removable handle, they will be keyed to be non-interchangeable.

A removable handle is furnished as a separate item, not with the switch it operates, because in some cases the single handle operates many switches. The handle is keyed so that it will fit through the keyways on the escutcheon in a specific position.

When ordering a removable handle, specify the type, the position in which it is to be removable, and the switch or switches it will be used with. The factory will assign the handle. To

TABLE 1 Nomenclature guide for SBM removable handles

1st Number	2nd Number	1st Letter	2nd Letter	3rd No.	4th No.	5th No.
Handle Type	Removable in Position	Common Code	Action of Rotation	Escutcheon Keyways		
1 = Knurled	1	W	$W=C W \& C C W$	1	1	1
$2=0 \mathrm{val}$	thru		$\mathrm{L}=\mathrm{CCW}$ (special)	thru	thru	thru
$3=\underset{\text { grip }}{\text { Pistol }}$	8		$\mathrm{R}=\mathrm{CW}$ (special)	8	8	8

Example 1: 21 WW135
This oval handle has keys at positions which, when it is in position 1 , or nine o'clock, will line up with escutcheon keyways 1,3 , and 5 . It is therefore removable in position 1.
identify SBM removable handles, see Table 1.

SB-1 \& SB-9 SWITCH

The keyed escutcheon for the SB-1 \& SB-9 switch is normally furnished with two keys and three keyways (see Fig. 19). The circumferential location of the keys and keyways will vary, depending on the location, etc., in which the handle is to be removable. The location of the keyways is assigned by the factory.

Table 2 gives a list of standard keyed escutcheons and the proper removable handle for removing the handle in both the vertical $(12$ o^{\prime} clock) position and $90^{\circ} \mathrm{ccw}(9$ o'clock) position. Escutcheons 6016164P-2 thru P-14 are used on switches if the throw does not exceed 90° on either side of the vertical (12 o^{\prime} clock) position, and P-23, 24 and 25 are used when the throw does exceed this limit.

Fig. 19. SB-1 escutcheon for use with removable handle

Oval handles 16SB1CC1 thru 32 are listed with direction and degree of throw from the positions in which they are removable. The code letters A thru Z in the left hand column identify the escutcheons used on the basic unlisted switches.

Example: 16SB1AB300SAM3Y, the 2nd form letter \underline{A} identifies a keyed escutcheon 6016164P 3.

When a special keyed escutcheon is required, different from any of those listed, the code letter " X " is used followed by the part number.

Example: 16SB1AB300SX34M2Y.
All keyed escutcheons will now have the part number stamped at the bottom left hand corner instead of the code letters previously stamped at the bottom righthand corner. If the code letter or other indentification is desired, it will be stamped at the bottom righthand corner by requisition only (three characters maximum). The 16SB1CC oval type removable handle will now have the form number only stamped on the lower face of the handle. Those removable handles which have metal shanks (6119745G) will have the group number stamped on the shank. When a switch with a keyed escutcheon for a removable handle is ordered, be sure to specify the position in which the handle is to be removable. If an existing handie will be used, give the number of the existing handle.

TABLE 2

Code	Model Number		Throw
	Escutcheon*	Handle	
Handle Removable in Vertical Position			
A	6016164P3	16SB1CC1	$135^{\circ} \mathrm{CW}$
A	3	CC18	360°
B	4	CC2	$135^{\circ} \mathrm{CW}$
B	4	CC19	360°
C	5	CC3	$135^{\circ} \mathrm{CW}$
C	5	CC15	360°
D	6	CC4	$135^{\circ} \mathrm{CW}$
D	6	CC11	$45^{\circ} \mathrm{CW}$ \& CCW
D	6	CC22	$45^{\circ} \mathrm{CCW}$
D	6	CC27	360°
E	7	CC5	45 CW
E	7	CC12	$75^{\circ} \mathrm{CW}$
E	7	CC13	$45^{\circ} \mathrm{CW}$ \& CCW
E	7	C20	360°
E	7	CC25	$75^{\circ} \mathrm{CCW}$
F	8	CC6	$45^{\circ} \mathrm{CW}$
F	8	CC14	$45^{\circ} \mathrm{CW} \& \mathrm{CCW}$
F	8	CC24	360°
G	9	CC7	$45^{\circ} \mathrm{CW}$ "1" Eng.
G	9	CC8	$45^{\circ} \mathrm{CCW}$ "R" Eng.
G	9	CC17	$45^{\circ} \mathrm{CCW}$
G	9	CC26	$135^{\circ} \mathrm{CCW}$
G	9	CC29	$45^{\circ} \mathrm{CW}$
G	9	CC21	360°
H	10	CC23	360°
H	10	CC9	$45^{\circ} \mathrm{CW}$ "1" Eng.
H	10	CC10	$45^{\circ} \mathrm{CCW}$ " R^{\prime} Eng.
H	10	CC31	$45^{\circ} \mathrm{CW}$
H	10	CC32	$45^{\circ} \mathrm{CCW}$
J	23	CC18	360°
Y	24	CC19	360°
Z	25	CC21	360°
Handle Removable $90^{\circ} \mathrm{CCW}$			
K K	6016164P 11 11	$\begin{array}{r} 16 S B 1 C C 1 \\ \text { CC18 } \end{array}$	$\begin{aligned} & 135^{\circ} \mathrm{CW} \\ & 360^{\circ} \end{aligned}$
L	12	CC2	$135^{\circ} \mathrm{CW}$
L	12	CC15	360°
M	13	Cc3	$135^{\circ} \mathrm{CW}$
M	13	CC15	360°
N	14	CC11	$45^{\circ} \mathrm{CW} \& \mathrm{CCW}$
N	14	CC27	360°
N	14	CC4	$135^{\circ} \mathrm{CW}$
N	14	CC22	$45^{\circ} \mathrm{CCW}$
X	Special		

*The P number (3,4 , etc.) is used as the part number in the text.

Type SB-1 and SB-9

Fig. 20. Typical removable handles and escutcheons

Temperature－Meter Switches

Temperature－meter switches are furnished with palladium contacts， which have a constant resistance factor．This is necessary because calibrated leads are normally used in a temperature－meter circuit，and silver contacts would result in a variable resistance factor and cause fluctuation in meter readings．

Fig． 21 shows a temperature－meter switch，Model 16SB1CE52，reading four RTD＇s，on a two－wire circuit with a TEST and an OFF position．On a two－wire circuit，you can transfer up to seven coils with an OFF position，or six coils with a TEST and an OFF position．

Fig． 22 shows a Model 16SB1CE55 reading three RTD＇s，on a three－wire
circuit with a TEST and an OFF position．On a three－wire circuit，you can transfer up to six coils with an OFF position，or five coils with a TEST and an OFF position．When it is required to transfer more RTD＇s than the maximum for a given switch，two switches with a removable handle may be used．

TEMPERATURE METER TRANSFER SWITCH，

TRANSFERS TWO WIRES TO FOUR COILS，WITH TEST A OFF． MODEL NO．I6SBICE52

DETECTOR COILS IN MACHINE
Fig．21．Temperature meter switch，Model 16SB1CE52

TEMPERATURE METER TRANSFER SWITCH，

TRANSFERS THREE WIRES TO THREE COILS，WITH TEST \＆OFF MODEL NO．I6SBICE55

CONTACTS HANDLE END		POSITIONS														
		¢			扬	＋	2	京	츤			产	㐫		京	$\stackrel{7}{\square}$
1	1													X		
	2						X									
$\begin{array}{\|c\|c\|} \hline 3 & 4 \\ 0-11-0-110 \\ \hline \end{array}$	3													入		
	4					X	X	X								
5	5													X	X	
	6					X	\times	X								
${ }^{7}-11-0-1+0^{8}$	7										X					
	8			X												
9	9								X		X	X				
	10	X		X	X											
O-HO-H1	11								X		X	X				
	12	X	X	X	X											

DETECTOR COILS IN MACHINE
Fig．22．Temperature meter switch，Model 16SB1CE55

Outline Dimensions

Type SBAM Control and Transfer Switches

SHIPPING WEIGHTS

Approx weights are listed below. All weights listed apply to SB switches consisting of one stage. Add 6 ounces for each additional stage.

$$
\text { Type SBM } \quad(1 \text { Stage) } \quad 11 / 2 \mathrm{lb}
$$

(This data is subject to change without notice)

Outline Dimensions (conv.)
 Type SB-1 Control and Transfer Switches

Outline Dimensions (conr.)

Type SB-9 Control and Transfer Switches
(For estimating only)

Panel-mounted Type SB-9 switch
(Outline 116A139)
PANEL-MOUNTED TYPE SB-9

No. of Stages	Dimension ir: Inches					
	Standard Cover 12 Wires out Top and 24 Wires out Bottom			Large Cover 24 Wires out Top and Bottom		
	A	8	c	A	B	C
1	4%	$83 / 8$	$41 / 2$	$51 / 8$	$85 / 1$	$4^{15 / 16}$
2	$5 \mathrm{~s} / 8$	97		5%	10\%	
3	$63 / 8$	11%		$65 / 2$	$115 / 8$	
4	$71 / 6$	12\%		7\%	131/8	
5	$71 / 8$	14%		$81 / 8$	$145 / 8$	
6	$8 \mathrm{~s} / \mathrm{s}$	15\%		81/8	16\%	
7	$93 / 8$	173/6		$95 / 8$	175/6	
8	101/8	18\%		10 \%	$191 / 8$	
9	10\%	$203 / 8$		$111 / 8$	20 \%	
10	$115 / 8$	21%		11\%	$221 / 6$	
11	123/8	$233 / 8$		$125 / 8$	23 5/8	
12	$131 / 8$	24\%		$133 / 8$	$251 / 6$	
13	13\%	$263 / 8$		$141 / 8$	265/8	
14	14\%	$271 / 3$		14\%	$281 / 8$	
15	15\%	29318		15 \%/8	29 5/8	
16	161/8	30\%		16%	$311 / 8$	

* For spring-return switches when more than three and less than seven contacts close in the normal handle position, add $3 / 4^{\prime \prime}$ to " A ", and $11 / 2^{"}$ to " B ". When seven or more contacts close in the normal handle position, add $11 / 2$ " to " A " and 3 " to " B ".
Note: Removable handles are similar to fixed handles and available in all styles except radial and locked. They do not alter switch dimensions or panel drilling.

SHIPPING WEIGHTS

Approx weights are listed below. All weights listed apply to SB-9 switches consisting of one stage. Add 6 ounces for each additional stage.
Type SB-9
(1 Stage)
(a) 3 lb

Outline Dimensions (conr)
 Type S8-10 Control and Transfer Switches

(For estimating only)

Panel-mounted Type SB-10 switch

No. of Stages	Dimansion in Inches					
	Standard Cover -			Large Cover		
	A	B	c	A	B	C
1	$63 / 4$	121/2	$4^{1 / 2}$	7	1234	$415 / 16$
$2 \dagger$	63/4	121/2		7	121/4	
$3 \dagger$	71/2	14		7\%	141/4	
$4 \dagger$	$81 / 4$	151/2		$81 / 2$	151/4	
5	9	17		91/4	171/4	
6	93/4	181/2		10	$181 / 4$	
7	101/2	20		103/4	201/4	
8	111/4	211/2		111/2	211/4	
9	12	23		121/4	$231 / 4$	
10	121/4	$24^{1 / 2}$		13	243/4	
11	131/2	26		133/4	261/4	
12	$141 / 4$	271/2		141/2	$271 / 4$	

* Includes both lateral and rotary stages.

SHIPPING WEIGHTS

Approx weights are listed below. All weights listed apply to Type SB-10 switches consisting of one stage. Add 6 ounces for each additional stage.

Type SB-10 (1 Stage) @ 31/2 lb

Tandem Switch Outlines

NOTE:
ALL DIMENSIONS ARE IN INCHES

PANEL DRILLING - FRONT VIEW

* ADD $1 / 4$ TO A \& B DIM: FOR LARGE COVER

NO. OF STAGES	A^{*}	${ }^{*}{ }^{*}$
1	$5-1 / 16$	$7-7 / 16$
2	$5-13 / 16$	$8-15 / 16$
3	$6-9 / 16$	$10-7 / 16$
4	$7-5 / 16$	$11-15 / 16$
5	$8-1 / 16$	$13-7 / 16$
6	$8-13 / 16$	$14-15 / 16$
7	$9-9 / 16$	$16-7 / 16$
8	$10-5 / 16$	$17-15 / 16$
9	$11-1 / 16$	$19-7 / 16$
10	$11-13 / 16$	$20-15 / 16$
11	$12-9 / 16$	$22-7 / 16$
12	$13-5 / 16$	$23-15 / 16$
13	$14-1 / 16$	$25-7 / 16$
14	$14-13 / 16$	$26-15 / 16$
15	$15-9 / 16$	$28-7 / 16$
16	$16-5 / 16$	$29-15 / 16$

TWO SWITCH TANDEM SB-1 Gear-operated (360° rotation)

THREE SWITCH TANDEM SB- 1
Gear-operated $\left(360^{\circ}\right.$ rotation)

FOUR SWITCH TANDEM SB-1
Gear-operated (360° rotation)

(This data is subject to change without notice)

SB-switch with Yale Lock above the switch. For "A" and " B ", use standard dimensions plus " D ", depending on panel thickness.

SB-9 SWITCHES

STANDARD DIMENSIONS IN INCHES

NO. OF STAGES	STANDARD COVER 12 WIRES OUT TOP AND 24 WIRES OUT BOTTOM			LARGE COVER 24 WIRES OUT TOP AND BOTTOM		
	A	B	C	A	B	C
1	4-7/8	8-3/8	$41 / 2$	5-1/8	8-5/8	415/16
2	5-5/8	9-7/8		5-7/8	10-1/8	
3	6-3/8	11-3/8		6-5/8	11-5/8	
4	7-1/8	12-7/8		7-3/8	13-1/8	
5	7-7/8	14.3/8		8-1/8	14-5/8	
6	8-3/8	15-7/8		8-7/8	16-1/8	
7	9-3/8	17-3/8		9-5/8	17.5/8	
8	10-1/8	18-7/8		10-3/8	19-1/8	
9	10-7/8	20-3/8		11-1/8	20-5/8	
10	11-5/8	21-7/8		11-7/8	22-1/8	
11	12-3/8	22-3/8		12-5/8	23-5/8	
12	13-1/8	24-7/8		13-3/8	251/8	
13	13-7/8	26-3/8		14-1/8	26-5/8	
14	14-5/8	27-7/8		14-7/8	28-1/8	
15	15-3/8	29-3/8		15-5/8	29-5/8	
16	16-1/8	30-7/8		16-3/8	31-1/8	

(This data is subject to change without notice)

Contact Diagrams for SBM Switch

VOLTMETER SWITCH, double-pole, single-throw, Model No. IOAA001.
Knurled handle.

Fig. 26.
VOLTMETER SWITCH, double-pole, double-throw, Model No. 10AA002.
Knurled handle.

Fig. 27.
VOLTMETER TRANSFER SWITCH, three-phase, transfers four wires phase-to-neutral, Model No. 10AA003. Knurled handle.

Fig. 28. VOLTMETER SWITCH, Phase-to-phase, or phase-to-neutral, Model No. 10AA004.
Knurled handle.

Fig. 29.
VOLTMETER SWITCH,
four circuits, two wires, Model No. 10AA005.
Knurled handle.

Contact Diagrams for SBM Switch

Fig. 30.
VOLTMETER TRANSFER SWITCH, three-phase, transfers four wires phase-to-phase and phase-to-neutral, Model No. 10AA006. Knurled handle.

Fig. 31. VOLTMETER SWITCH, two three-phase, three-wire circuits,
Model No. 10AA007.
Knurled handle.

Fig. 32.
AMMETER TRANSFER SWITCH,
three CT's (connect at end of secondary), Model No. 10AA008. Knurled handle.

Fig. 33.
AMMETER TRANSFER SWITCH,
three CT's with off
(connect at end of secondary), Model No. IOAA009.
Knurled handle.

Fig. 34.
AMMETER TRANSFER SWITCH,
three independent circuits,
Model No. IOAAO10.
Knurled handle.

Contact Diagrams for SBM Switch

 (T
AMMETER TRANSFER SWITCH,

 two CT's(connect at end of secondary).
Model No. l0aAO11.
Knurled handle.

Fig. 36.
AMMETER TRANSFER SWITCH,
two CT's with off
lconnect at end of secondary,
Model No. 10AAOI 2.
Knurled handle.

Fig. 37.

Fig. 38.

AMMETER-VOLTMETER
TRANSFER SWITCH, three-
phase, three wires phase-to-
phase, plus three independent
current transformer circuits,
Model No. 10AAO14.
Knurled handle.

three independent circuits with off,
Model No. IOAAOI3.
Knurled handie.

ESCUTCHEON \& CONTACT DIAGRAM
AMMETER
2
$-\quad 0 \quad w$

Contact Diagrams for SBM Switch

 neutral, plus three independent current transformer circuits, Model No. IOAA015.
Knurled handle.

Fig. 40.
AMMETER-VOLTMETER TRANSFER SWITCH,
three-phase, three wires phase-to-phase plus three current transformers (conned at end of secondary), Model No. 10AAO16. Knurled handle.

Fig. 41.
AMMETER-VOLTMETER TRANSFER SWITCH, three-phase, four wires phase-to-neutral, plus three current transformers lconnect at end of secondary), Model No. 10AAOI7.
Knurled handle.

Fig. 42
CIRCUIT-BREAKER CONTROL SWITCH,
Model No. IOAA100.
Pistol-grip handie.

Contact Diagrams for SBM Switch

Fig. 44.
TRIP SWITCH,
contacts normally open,
Model No. IOAA1 02.
Pistol-grip handle.

Fig. 45. TRIP SWITCH,
contacts normally closed, Model No. IOAA103.
Pistol-grip handle.

\qquad

Fig. 46. CIRCUIT-BREAKER CONTROL SWITCH for operating two breakers,
Model No. IOAA104.
Pistal-grip handle.

Fig. 47.
SWITCH SUBSTITUTE
for push-button station, Model No. l0AA105.
Pistol-grip handle.

Fig. 48. CIRCUIT-BREAKER CONTROL
SWITCH,
Model No. 10AAI 06.
Pistol-grip handle.

Fig. 49. CIRCUIT-BREAKER CONTROL
SWITCH,
Model No. IOAA107.
Pistol-grip handle.

Fig. 50. CIRCUIT-BREAKER CONTROL
SWITCH,
Model No. 10AA108.
Pistol-grip handle.

Fig. 51. CIRCUIT-BREAKER CONTROL
5WITCH,
Model No. 10AA109.
Pistol-grip handle.

CIRCUIT-BREAKER CONTROL
SWITCH,
Model No. 10AAll2.
Pistol-grip handle.

No.
DESCRIPTION ESCUTCHEON \& CONTACT DIAGRAM

Fig. 55.
CIRCUIT-BREAKER CONTROL
SWITCH,
Model No. IOAAll3.
Pistol-grip handle.

Fig. 56.
CIRCUIT-BREAKER CONTROL
SWITCH,
Model No. IOAAII4.
Pistol-grip handle.

Fig. 57.
CIRCUIT-BREAKER CONTROL
SWITCH,
Model No. 10AAlls. /
Pistol-grip handle.

Fig. 60.
CIRCUIT-BREAKER CONTROL
SWITCH,
Model No. IOAAll8.
Pistol-grip handle.

Contact Diagrams for SBM Switch

No. DESCRIPTION ESCUTCHEON \& CONTACT DIAGRAM

Fig. 61. CIRCUIT-BREAKER CONTROL
SWITCH.
Model No. IOAAll9.
Pistol-grip handle.

Fig. 62. CIRCUIT-BREAKER CONTROL
SWITCH,
Model No. IOAA1 20.
Pistol-grip handle.

Fig. 63. CIRCUIT-BREAKER CONTROL
SWITCH,
Model No. 10AA121.
Pistol-grip handle.

CIRCUIT-bREAKER CONTROL
SWITCH,
Model No. 10AA123.
Pistal-grip handle.

Fig. 66. CIRCUIT-BREAKER CONTROL
SWITCH,
Model No. IOAA124.
Pistol-grip handle.

Contact Diagrams for SBM Switch

No. DESCRIPTION 2.

Fig. 67.
WATTMETER TRANSFER SWITCH, two current coils, Model No. 10AA018. Knurled handle.

Fig. 68.
WATTMETER TRANSFER SWITCH, three current coils, Model No. IOAAOI9. Knurled handle.

Fig. 69. WATTMETER TRANSFER SWITCH, two current and two potential coils, Model No. 10AA020.
Knurled handle.

Fig. 70.
POWER-FACTOR SWITCH, one or two current coils, Model No. IOAA021. Knurled handle.

Contact Diagrams for SBM Switch

No.	DESCRIPTION	ESCUTCHEON \& CONTACT DIAGRAM	WIRING DIAGRAM
Fig. 71.	POWER-FACTOR SWITCH, one current and two potential coils, Model No. IOAAO22. Knurled handle.	P. F. METER OFF 0 0	
Fig. 72.	POWER-FACTOR OR WATTMETER REVERSING SWITCH, Model No. 10AA023. Knurled handle.		
Fig. 73.	governor or rheostat MOTOR CONTROL SWITCH, Model No. 10AA066. Lever handle.		
Fig. 74.	MOTOR CONTROL SWITCH, Model No. 10AA067. Pistol-grip handle.		

Contact Diagrams for SBM Switch

Fig. 75. SYNCHRONIZING SWITCH, machine-to-bus with inferlocks, Model No. IOAA024.

Uses removable oval handle, 23WW145

Fig. 76. SYNChronizing switch, running and incoming, Model No. 10AA025.
Uses one each removable oval handle,
$R=23 W L 235,^{\circ}$
$I=23 W R 235$.

Fig. 77.
SYNCHRONIZING SWITCH between machines without potential transformers, Model No. 10AA026. Uses removable oval handle, 23WWI23.•

Fig. 78.
MOTOR CONTROL SWITCH for splif-field motors, Model No. 10AA065. Pistol-grip handle.

x in all contact diagrams denotes contacts clased

- Removable handles must be ordered separately.

Fig. 79.
SINGLE- OR DOUBLE-POLE
single-throw, maintain contact,
Model No. 10AA027.
With spring return,
Model No. 104A028.
Oval handle.

THREE- OR FOUR-POLE,
Fig. 80.
single-throw, maintain contact,
Model No. 10AA029.
With spring return,
Model No. IOAA030.
Oval handle.

FIVE- OR SIX-POLE,
single-throw, maintain contact,
Model No. IOAA03I.
With spring return,
Model No. IOAA032.
Oval handle.

B. SEVEN. OR EIGHT-

POLE, single-throw, maintained,
Model No. 10AA033.
With spring return, Model No. 10AAO34.

C. NINE-ORTEN-POLE,
single-throw, maintained, Model No. 1OAAO35 With spring return, Model No. 10AA036.
D. ELEVEN- OR TWELVE-POLE, singlethrow, maintained, Model No. 10AA0037. With spring return, With spring return,
Model No. 10AAO38.

Fig. 84.
THREE-POLE, double-throw
with off, maintain contact,
Model No. IOAA068.
With spring return,
Model No. 10AA043.
Oval handle.

B. FOUR-POLE, doublethrow with off,
maintained,
Model No. 10AA044.
With spring return, Model No. 10AA045.

[^0]Fig. 85. SINGLE-POLE, double-throw,
Model No. 10AA050.
Oval handle.

Fig. 88. SINGLE-POLE, three-throw, maintain contact.
Model No. 10AA057.
Oval handle.

Fig. 86. DOUBLE-POLE, double-throw,
Model No. IOAA051.
Oval handle.

Fig. 89. SINGLE-POLE, four-throw,
Model No. IOAAOS8.
Oval handle.

Fig. 90. SINGLE-POLE, five-throw maintain contact.
Model No. IOAAOS9.
Oval handle.

D. SIX-POLE, double-throw, Model No. 10AAO55.
E. SEVEN-POLE, double-throw, Model No. 10AA056.
B. FOUR-POLE, double-throw, Model No. 10AA053.
C. FIVE-POLE, double-throw, Model No. 10AA054.

Contact Diagrams for SBM Switch

No.

Fig. 91. SINGLE-POLE, six-throw,
Model No. IOAA060.
Oval handle.

Fig. 92
SINGLE-POLE, seven-throw,
Model No. IOAA061.
Oval handle.

Fig. 93.
SINGLE-POLE, eight-throw,
Model No. IOAA062.
Oval handle.

[^1]Contact Diagrams for SB-1 Switches

Fig. 96.
VOLTMETER SWITCH, double-pole, single-throw, Model No. $165 B I C A 1$.
Knurled handle.
ig. 97. VOLTMETER SWITCH,
double-pole, double-throw,
Model No. 16 SBICE27.
Knurled handle.

Fig. 98.
VOLTMETER SWITCH,
phase-to-phase or phase-to-neutral,
Model No. 16SB1CF11.
Knurled handle.

Fig. 99. VOLTMETER SWITCH, threephase, phase-to-phose. phase-to-neutral, Model No. $165 B 1 C F 16$. Knurled handle.

Fig. 100. VOLtMETER TRANSFER SWITCH, three-phase, four wires, phase-to-neutral, Model No. 165B1CF22.
Knurled handle.

WIRING DIAGRAM

ig. 97.

Fig. 98.
\qquad
20 ndle.

Contact Diagrams for SB-1 Switches

NO. E. DESCRIPTION \because ESCUTCHEON \&CONTACT DIÁGRAM WIRING:DIAGRAM

Fig. 101.
VOLTMETER TRANSFER SWITCH, two three-phase, three-wire circuits,
Model No. 1658 ICf23:
Knurled handle.

Fig. 102.
AMMETER TRANSFER SWITCH,
three independent circuits, Model No. 16SBICA7.
Knurled handle.

Fig. 103.
AMMETER TRANSFER SWITCH,
three independent circuits with off,
Model No. 16SBICA15.
Knurled handle.

Fig. 104.
AMMETER TRANSFER SWITCH,
(connect at end of secondary),
Model No. 165 BICA1 8.
Knurled handle.

For three independent circuits, remove jumpers 1C-5C and 5C-9C.

[^2]Contact Diagrams for SB-1 Switches

NO. DESCRIPTION

Fig. 105. AMMETER TRANSFER SWITCH, three current transformers with off
(connect at end of secondary), Model No. 16SBICAI9.
Knurled handle.

Fig. 106.
AMMETER TRANSFER SWITCH, two current transformers with off
(sonnect at end of secondary), Model No. $165 B 1 C A 20$.

Fig. 107. AMMETER TRANSFER SWITCH, two current transformers (connect at end of secondary), Model No. 16SBICE25. Knurled handle.
ig. 108.

AMMETER TRANSFER SWITCH,

four independent circuits plus off,
Modei No. 16SBICFI7.
Knurled handle.

Contact Diagrams for SB-1 Switches

Contact Diagrams for SB-1 Switches

Fig. 113. AMMETER TRANSFER SWITCH,
six current transformers with
off.
(Connect at end of
secondaryl
Model No. 16SB1CA28,
Knurled handle.

Fig. 114.
AMMETER TRANSFER SWITCH,
six independent circuits plus off.
Model No. 16SB1CA29,
Knurled handle.

[^3]Contact Diagrams for SB-1 Switches

NO.
DESCRIPTION

WIRING DIAGRAM

Fig. 115. CIRCUIT-BREAKER CONTROL SWITCH,
Model No. 16SBIBI.
Pistol-grip handle.

Fig. 116. CIRCUIT-BREAKER CONTROL SWITCH,
Model No. 165BIB2.
Pistol-grip handle.

Fig. 117. CIRCUIT-BREAKER TRIP sWITCH,
contacts normally open,
Model Na. 165B183.
Pistol-grip handle.

Fig: 118.
CIRCUIT-BREAKER TRIP SWITCH,
contasts normally closed,
Model No. 1658184.
Pistol-grip handle.
Model No. 16SBIB4
Pistol-grip handle.

Pistol

Contact Diagrams for SB-1 Switches

NO.
DESCRIPTION

ESCUTCHEON \& CONTACT DIAGRAM				
BREAKER CONTROL	$\begin{gathered} \text { CONTACTS } \\ \text { HANDLE } \\ \text { END } \end{gathered}$	Positions		
$\text { 人 } \%$		Close	Normal	Trip
	$0-11011$	X		X
	0			X
	- $41+\frac{3}{4}$	X		$\frac{X}{X}$
	115	X		
	Spring return			

Fig. 120.
CIRCUIT-BREAKER CONTROL SWITCH, substitute for push-button station, Model No. 16SB1B7. Pistol-grip handle.

Fig. 121.
CIRCUIT-BREAKER CONTROL SWITCH,
Model No. 16SB1B9.
Pistol-grip handle.

Fig. 122.
CIRCUIT-BREAKER CONTROL SWITCH,
Model No. I6SBiBio.
Pistol-grip handle.

Fig. 126. CIRCUIT-BREAKER CONTROL
SWITCH,
Model No. 16SBIBI6.
Pistol-grip handle.

Fig. 124. CIRCUIT-BREAKER CONTROL SWITCH,
Model No. I6SB1B14.
Pistol-grip handle.

Fig. 125. CIRCUIT-BREAKER CONTROL SWITCH,
Model No. 16581815.
Pistol-grip handle.

CIRCUIT-BREAKER CONTROL
SWITCH,
Model No. 165B1818.
Pistol-grip handle:

Contact Diagrams for SB-1 Switches

Fig. 129. CIRCUIT-BREAKER CONTROL
SWITCH,
Model No. 16SBIB19.
Pistol-grip handle.

Fig. 130.
CIRCUIT-BREAKER CONTROL
SWITCH,
Model No. 165B1B20.
Pistal-grip handle.

Fig. 131. CIRCUIT-BREAKER CONTROL
SWITCH,
Model No. 16SB182I.
Pistol-grip handle.

Fig. 132. CIRCUIT-BREAKER CONTROL
Model No. 16SB1B22.
Pistol-grip handle.

Fig. 133. CIRCUIT-BREAKER CONTROL
SWITCH,
Model No. 16SB1B23.
Pistol-grip handle.

Fig. 134. CIRCUIT-BREAKER CONTROL
SWITCH,
Model No. I6SB1B24.
Pistol-grip handle.

Contact Diagrams for SB-1 Switches

No.
DESCRIPTION

ESCUTCHEO	N \& CONTACT DIAGRAM	WIRING DIAGRAM

Fig. 136. CIRCUIT-bREAKER CONTROL switch,
Model No. I6SB1B26.
Pistol-grip handle.

Fig. 137. WATTMETER TRANSFER
SWITCH, three current coils, Model No. 16 SB 1 CB 13 ,
Fixed knuried handle.
Model No. 16 SBICF8. Uses removable oval handle. 165B1CC6.

Fig. 138.
WATTMETER TRANSFER SWITCH, two current coils, Model No. I6SBlCBI2,
Fixed knurled handle.
Model No. $16 S B 1$ CF7.
Uses removable oval handle.
16SB1CC6.

x in oll contact diagrams denotes contacts closed
-Removable handles must be ordered separately.

Contact Diagrams for SB-1 Switches

Fig. 139.
POWER-FACTOR OR WATTMETER REVERSING SWITCH, Model No. 16SB1CA10,
Two Position
Knurled handle,
Model No. 16SB1CB4.
Three Position
Engraved W - off - RVA.

Fig. 140.
WATTMETER TRANSFER SWITCH, two current and two potential coils, Model No. 16SB1CB14. Knurled handle.

WAT TMETER	CONTACTS 1	1T1.1T1
$\text { OFF } Q_{2}$		
	$410+10 \frac{1}{2} \times x$	
	H604n $3 x x_{1}$	
	-1toon $4 \times \times$	
	-1 $5 \times x$	
	6 ¢ $6 \times$	
	wortr $\frac{7}{81 \times \times 1}$	

Fig. 141.
POWER-FACTOR SWITCH, one current and two potential coils,
Model No. 16SB1CA26,
Fixed knurled handle.
Model No. 16SB1CF6.
Uses removable oval handle, 16SB1CC5 •

Fig. 142.

POWER-FACTOR SWITCH, one or two current coils, Model No. 16SB1CA22, Knurled handle.

Model No. 16SB1CA8.
Uses removable oval handle, 16SB1CC5 -

Contact Diagrams for SB-1 Switches

No. DESCRIPTION machine-to-bus with interlocks, Model No. 16581 CF9.
Uses removable oval handle, 16SB1CC7.
\longrightarrow

No. DESCRIPTION ESCUTCHEON \& CONTACT DIAGRAM

Fig. 147. MOTOR-CONTROL SWITCH
for split-field motors,
Model No. $165 B 1 A A 1$.
Pistol-grip handle.

Fig. 148. TEMPERATURE-METER TRANS-
FER SWITCH, transfers two
wires to five coils and test,
Palladium contacts
Model No. 16SBICE33.
Knurled handle.

Fig. 149.
TEMPERATURE-METER TRANS-
FER SWITCH, transfers two
wires to three coils and test,
Palladium contacts
Model No. 16SB1CE28.
Knurled handle.

No.
DESCRIPTION ESCUTCHEON \& CONTACT DIAGRAM

Fig. 150.
TEMPERATURE-METER TRANS-
FER SWITCH, transfers three
wires to three coils and test,
Palladium contacts
Model No. I6SBICE 29.
Knurled handle.

Fig. 151.
TEMPERATURE-METER TRANS-
FER SWITCH, transfers two.
wires to four coils,
with test and off,
Ṕalladium contacts
Model No. 16SB1CE52,
Uses removable oval handle,
16SB1CC19.
With fixed knurled handle,
Model No. 16 SBICE6I.

[^4]- Removable handles must be ordered separately.

Contact Diagrams for SB-1 Switches

Fig. 156. single- or double-pole,
single-throw, maintain contact,
Model No. 16 SBICGI.
With spring return,
Model No. 16SBICG2.
Oval handle.

Fig. 157.
three- or four-pole,
single-throw, maintain contact,
Model No. 16 SBICG3.
With spring return,
Model No. 16SBICG4.
Oval handle.

Fig. 154.
TEMPERATURE-METER TRANS-
FER SWITCH, transfers two
wires to three coils,
with test and off,
Model No. 1 6SBICES7.
Uses removable oval handle,
16SB1CC19.
For fixed knurled handle,
Model No. 16SBICE62.
Fig. 153.

TEMPERATURE METER TRANS. FER SWITCH, transfers three wires to five coils and test, Palladium Contacts Model No. 16SBICE66. Knurled handle.

Contact Diagrams for SB-1 Switches

No.
DESCRIPTION ESCUTCHEON \& CONTACT DIAGRAM
Fig. 159.
SINGLE-POLE, double-throw
with off, maintain contact.
Model No. 16SBICG13.
With spring return,
Model No. 1 6SBICG14.
Oval handle.

Fig. 160. DOUBLE-POLE, double-throw
with off, maintain contact.
Model No. 1 6SBICG15.
With spring return,
Model No. 16SBICG16.
Oval handle.

Fig. 161. A.
THREE-POLE, doublethrow with off, maintain. Model No. 16SB1CG17.

With spring return, Model No. 16SB1CG18. Oval handle.

B.	C.	D.
4 P-dt. w/off,	5P-dt. w/off,	6 P -dt. w/off,
maintain.	maintain.	maintain.
16 SB1CG19.	$16 S B 1 C G 21$.	$16 S B 1 C G 23$.
W/spr. ret.,	W/spr. ret.,	W/spr. ret.,
16 SB1CG20.	$16 S B 1 C G 22$.	$16 S B 1 C G 24$.

OFF 2
0

Fig. 162. SINGLE-POLE, double-throw, Model No. 16SB1CG25.
Oval handle.

NO.

 DESCRIPTION ESCUTCHEON \& CONTACT DIAGRAMFig. 163. DOUBLE-POLE, double-throw,
Model No. 16SB1CG26,
Oval handle.

Fig. 165. SINGLE-POLE, triple-throw, Model No. 16SBICG32.
Oval handle.

Fig. 166. SINGLE-POLE, four-throw, Model No. 16BICG33.
Oval handle.

Fig. 167. SINGLE-POIE, five-throw, Model No. 165 BICG34.
Oval handle.

NO.
DESCRIPTION ESCUTCHEON \& CONTACT DIAGRAM

Fig. 168. SINGLE-POLE, six-throw,
Model No. I6SBICG35.
Oval handle.

Fig. 169. SINGLE-POLE, seven-throw,
Model No. 16SBICG36.
Oval handle.

Fig. 170. SINGLE-POLE, eight-throw,
Model No. 165B1CG37.
Oval handle.

Fig. 171. SINGLE-POLE, 10-throw,
Model No. 16581 CG38.
Oval handle.

Fig. 172 SINGLE-POLE, 12-throw,
Model No. 16SBICG39.
Oval handle.

Fig. 173. DOUBLE-POLE, four-throw
Model No. 16SB1CG40.
Oval handle.

Fig. 174. DOUBLE-POLE, six-throw, Model No. 16SBICG41. Oval handle.

[^5]D DESCRIPTION

Fig. 175. DOUBLE-POLE, eight-throw, Model No. 16SBICG42.
Oval handle.

Ordering Guide for SBM Switches

Specification Form GED-3933 has been designed for data-processing equipment and also to make it easier to fill out. Refer to Fig. 178 and proceed as follows to fill out the form:

FOR FACTORY USE ONLY (Blocks 9 through 18)

These blocks are for factory use only, and should be left blank.
(2.)

CATALOG NUMBER

 (Blocks 19 through 25)This number is assigned at the factory and these blocks should be left blank.

(3.) ACTION

This part of the form is broken into five sections, detailed under the five following points (4-8).

MAINTAINED ALL POSITIONS

 (Block 26)Put an " X " in this block if all the positions are maintained, and put in a dash (-) if they are not maintained.

SPRING RETURN FROM COUNTER-CLOCKWISE POSITIONS (Blocks 27 and 28)

Put the number of the position the spring return action is from in Block 27 and the position the spring return is to in Block 28. Put in a dash when this action does not apply.

SPRING RETURN FROM CLOCKWISE POSITIONS (Blocks 29 and 30)

Put the number of the position the spring return action is from in Block 29 and the position the spring return is to in Block 30. Put in a dash when this action does not apply.

MAINTAINED POSITION WITH SPRING RETURN
(Blocks 31 through 34)
When you have the combination of maintained springreturn action, the maintained positions are put in these blocks,

Fig. 178. Specification form, Type SBM switches
starting with Block 31 and the lowest position number. Put a dash in the blocks that remain.

NOTE: With maintained- and spring-return action, if Position 3 is being used, Position 3 is always a maintained position.
(8.) PULL-TO-LOCK (Blocks 35 and 36)

When Pull-to-Lock is desired, the positions in which the handle is to be pulled and locked are indicated in these blocks. A dash is indicated in both blocks when Pull-to-Lock is not desired.

(9.) HANDLES

(Block 37)

Select the proper code letter (K, V, P, L or N) to identify the type of handle desired. Indicate the appropriate letter in this block. The code letters A, B, C \& D are used when a matching Type SB-1 handle is requested.

NOTE: For removable-typehandle switches, the code " N " for none is used, since removable handles are furnished as a separate item and are not furnished with the switch. See "Removable-Handles" Section.

Ordering Guide for SBM Switches (Cont'd.)

(10)
 ESCUTCHEONS
 (Block 38)

Select the proper code letter (S, T, N, P or R) for the desired escutcheon, and put it in this block. When a keyed escutcheon is required for a removable handle, use the letter " R " and refer to Point 11, "Escutcheon Keyways". It should be noted that code " P " is a special escutcheon. This code is used when Lamicoid escutcheons are required. The description "Lamicoid" must also be specified in "Special Instructions" on the form as described in Point 17.

ESCUTCHEON KEYWAYS

 (Blocks 39 through 43)These blocks are used only when a keyed escutcheon (Code R) is specified. Three keyways are normally used, and information in these blocks is generally assigned at the factory. See "Removable-Handles" Section.

INTERMEDIATE POSITIONS

 (Blocks 44 through 51)The SBM switch has eight position locations, with 45 degrees between positions. When 90 -degree positioning is required, the 45 -degree position location becomes an intermediate (non-feel) position. An " X " in one of the eight blocks above the positions indicates this position to be an intermediate position. See the section on "Overlapping (make-beforebreak) Contacts".

OPERATING REQUIREMENT TABLE - The vertical numbers 1 to 20 are the contact numbers. The horizontal numbers, 1 through 8, are the position locations.

Put an " X " in the block under the position in which you want that contact to close. If that contact is to be open, leave the block blank. As the right of the table is sketch of a standard escutcheon, to aid in identifying the position locations on the switch.

When slip contacts are required, use the table on the right showing Position locations 1 through 5 only (as indicated). Under Position 3, there are two columns (2 and 4) to show if a contact is to be closed in Position 3 only when coming from Position 2 or when coming from Position 4. Whatever contact action occurs in only Position 3 from 2 will also occur in Position 2 and 1 (when used), and whatever contact action occurs in only 3 from 4 will also occur in Positon 4 and 5 (when used). Refer to "'Slip Limitations" and how to overcome them before completing this part of the form.

If a contact is not a slip contact and you want it to close in Position 3, put an " X " in both columns under Position 3.
(14.) STOP LOCATIONS - At the bottom of the switch operating tables are Blocks number 1 through 8 and 1 through 6 which identify the stop locations. The stop locations are under the vertical lines between the positions.
Example:
When using Positions 2, 3 and 4, circle stop location Number 2 to show that the handle is not to go to Position 1 from Position 2, and circle stop location Number 5 to show that the handle is not to go to Position 5 from Position 4. For 360 -degree rotation, do not circle any stops.
(15.) CIRCUIT DESIGNATION ENGRAVING - Specify the circuit designation desired in the 22 blocks following the blocks marked 108. A maximum of 22 characters can be specified.

(16.) ESCUTCHEON ENGRAVING -

There are two lines of engraving available for each position (1 through 8), and a maximum of eight characters per line. If only one line is required, use the top line.

If a position is to be blank, write ("BLANK") for that position. When a target escutcheon is specified, leave Position 3 blank.

If the entire escutcheon is to be blank, write "BLANK ESCUTCHEON" under "Special Instructions" (Point 17) at the bottom of the form.

(17.) SPECIAL INSTRUCTIONS

There are four rows of blocks to be used for any special instructions, such as the handle painted red, Lamicoid escutcheon for thick panel, blank escutcheon, jumpers, etc.

There are two types of Jumpers available for the SBM switch: Jumper 307V515 for contacts on the same stage, and Jumper 307V512 for jumpering contacts on adjacent stages.
NOTE:. Jumpers are only furnished assembled, where required, on all standard listed switches. For unlisted switches, separate jumpers can be ordered.

EXAMPLES OF FILLED-OUT SPECIFICATION FORMS

Fig. 179. A specification form for SBM switches, four-position, pull-tolock switch with pistol-grip handle, and standard escutcheon. Action is spring return from Positions 1 and 2 to Position 3, maintained action in Positions 3 and 4, with handle locked against turning when it is pulled out in Position 1. The handle will stay in position till it is pushed back to the "IN" position. Contacts 3, 4, 7, 8, 9 and 10 are slip contacts. Note: Contacts in Position 1 do not change when the handle is pulled out. Under "Special Instructions," 2 jumpers (307V515) are to be furnished loose with the switch.

Fig. 180. A specification form for a three-position, breaker-control switch with spring return from Position 2 to Position 3, and from Position 4 to Position 3, pistol-grip handle, and target escutcheon required for thick panel (1-inch or 1-1/2 inch) slip contacts 1, 2, 7, 8 and 9. Note that Position 3 is not engraved when a target escutcheon is used.

Fig. 181. A specification form for a four-position switch with maintained action, no handle, keyed escutcheon for removable handle with keys at Positions 2, 3, and 4, and 360-degree rotation (no stops) using only Positions 1, 3, 5 and 7 (intermediates at Positions 2, 4, 6 and 8).

Ordering Guide for SBM Switches (Cont'd.)

Fig. 180. Example of completed specification form

Fig. 179. Example of completed specification form

Fig. 181. Example of completed specification form

Ordering Guide for SB-1, -9 and -10 Switches

The specification form for SB-1, -9, and - 10 switches, GED-3934, is in two parts, as described below. Part 1 (see Fig. 182) permits the easy specification of SB-1, -9, and -10 switch contact arrangements, escutcheons, handles, etc., including the lateralaction switching capabilities of the SB-10 switch. Part 2 (see Fig. 191) is for optional features, such as tandem mechanism, separately-mounted locks, etc.

(1.) POSITION LOCATION

It is important to select the proper position location to avoid certain limitations which could add to the cost of the switch The handle-position location areas are shown front view, facing the handle. Select the desired degrees between positions and mark the position numbers. Going in a clockwise direction, Position 1 starts in the extreme counter-clockwise (CCW) position. When 360 degree rotation is required, Position 1 starts at 12:00 o'clock.

2. CONTACT ARRANGEMENT

Note: If lateral action is required, consult instructions Numbers 11 and 12 before completing this section.

The vertical columns on the left (numberes 1 to 32) are the contacts. The position numbers should be marked in the top column under "Handie Positions (back view)". The term "back view" means that the positions are read from right-to-left for the contact arrangement only.

Refer to Fig. 183A. An " X " only under handle Position 1 and across from Contact 1 means that Contact 1 will only close when the handle is in Position 1. An " X " under handle Positions 2 and 3 and across from Contact 2 means Contact 2 will close when the handle is turned to Position 2 and remain closed when turned to Position 3 (see "Cam Action and Limitations" before proceeding).

Refer to Fig. 183B. An asterisk between the position numbers is used to indicate inter-

Fig. 182. Specification form, Type SB-1, SB-9, and SB-10 switches
mediate position to show the special contact action desired between the designated positions. (Refer to "Overlapping Contacts"). For specifying the contact arrangement with a slip action, see "Slip

Action" under "Cam Action and Limitations".

(3.) CONTACT CONNECTIONS

Mark the contact connections desired for each stage in the manner shown in Fig. 183C.

(C)

Fig. 183. Notations to show contact arrangement and connections

Some examples of correct and incorrect notation are shown in Fig. 184.

A common mistake is to show double-break contacts when they are not desired. (a) Here, the requirement is clearly that Contact 1 is closed in Position 1, that Contacts 1 and 2 are open in Position 2, and that Contact 2 closes in Position 3. However, with no common terminal, neither Position 1 nor Position 3 will make a circuit closure. There must be a common terminal as shown in (b).

If double-break action is required, use the notation shown in (c).

(8)

Fig. 184. Correct and incorrect notation of contact connections.

(4.) ESCUTCHEON ENGRAVING

Under "POS", indicate the position numbers which are marked in the handle-position blocks portion of the form. Indicate the desired engraving for the position next to it under "Escutcheon Engraving".

The circuit designation, if desired, is marked in the circuit plate engraving block above the escutcheon engraving.

(5.) HANDLES

Check the appropriate block to indicate the design of handles desired. Available handle types are shown in GEA-4746.

6. ESCUTCHEONS

For information and illustrations of the available escutcheons, refer to GEA-4746.

(A)

(C)

(E)

(G)

(B)

(D)

(F)

(H)

Fig. 185. Specification form, indicating rotating action.

Check the block next to the desired escutcheon. When a keyed escutcheon is checked, the position in which the handle is to be removable must be given, along with any other necessary information. (Refer to "Removable Handles").

(7.) rotating action

This portion of the form is broken into four separate sections. Please refer to Fig. 185.

Maintained All Positions When the handle is maintained in all positions, check this block.

Spring Return Action - Can be provided from both directions to NORMAL (see examples A and B, Fig. 185), or from one
direction to NORMAL (see examples C and D, Fig. 185).

Maintaining Position - When spring-return and maintained action is desired, both the spring-return positions, as per above, and the maintained positions are marked (see examples E and F, Fig. 185).

Pull-to-Lock-In Position When a pull-to-lock action is desired (see GEA-4746), fill-in the position in which the handle is to be pulled and latch (see examples G and H , Fig. 185).

(8.) PANEL THICKNESS

Give the panel thickness irp inches. This information is very important in selecting the proper
shaft and spacers, however it is frequently not specified. If the panel thickness is not given, the switch will be furnished for mounting on panels up to $3 / 16$ inch thick. Most switches can be furnished for mounting in panels up to two-inches thick.

(9.) COVER (NEMA I)

The switch will be furnished with an extruded vinyl cover which meets NEMA I requirements. Switches with one to twelve top terminals on the fixed-contact support assembly will be furnished with a standard cover. Switches with 13 to 32 top terminals will be furnished with larger covers to allow more room for the additional wires.

SPECIAL REMARKS

This space is provided for any additional information which may be required in the design of the switch. When GED-3934, Part 2, is used with Part 1, a notation should be made to indicate that both parts of the specification form have been used.

11-12. LATERAL CONTACT ACTION
(SB-10 Switches oilly)
Complete this section only when ordering a Type SB-10 Switch which has both lateral and rotary contacts. To identify the lateral stages, mark a dot in the designated blocks to the far left of the contact arrangement. (Maximum: four lateral stages, two contacts per stage). Note: Do not put an " X " under the handle positions for these contacts. An " X " is used only for the rotary contacts. (Fig. 186A).

The action of the lateral contacts is described in the "Lateral Action" blocks. Refer to Fig. 186B.

If you want to prevent rotary action in one of the lateral positions (either IN or OUT),

(A)

(B)

(C)

Fig. 186. Notation for specifying Type SB-10 switch action
cross out the other position. If you want rotary action in both the IN and OUT positions, cross out the word "NO" and add the designation " Q " on the line between the words " $1 \mathrm{~N}^{\prime}$ and "OUT".

If the handle is to be maintained in both the IN and OUT positions, cross out "Spring Return To IN/OUT". If the handle is to spring return to either the IN or OUT position, cross out the undesired position and "Maintaining IN \& OUT".

When rotary action is spring return, you can only have lateral
spring-return action when the lateral action is in the NORMAL (rotary spring released) position. The maximum number of lateral contacts that can be provided to open with the lateral spring action is four.

First select the proper action (Pull or Push) and write in the position in which this action is to take place, then, write in the contact number with the desired contact action. Refer to Fig. 186C for the lateral action available. Refer to Fig. 187 for examples.

Ordering Guide for SB-1, -9 and -10 Switches (Cont'd.)

Ordering Guide for SB-1, -9 and -10 Switches (Cont'd.)

Fig. 188. Example of completed specification form, calling for a 3-stage SB-1 switch, 3-position, main tained action, pistol grip handle, standard cover, and panel thickness of $1 / 8$ inch

Fig. 190. Example of completed specification form, calling for a 5-stage, 8-position SB-1 switch with maintained action, knurled handle, and 1/4 inch panel thickness

Fig. 189. Example of completed specification form calling for an 8-stage SB-1 switch, 5-position, spring return action (both directions), oval handle, standard cover, and panel thickness of $1 / 8$ inch

SPECIFYING OPTIONAL

 FEATURES (GED-3934, Part 2)Certain optional features are available with the SB-1, -9 and -10 switches, but not necessarily to all of them. Determine whether the option you require is available with the type of switch you are specifying, and check the appropriate block as described below.

(14.) LOCK-IN HANDLE

Specify the position or positions in which the handle is to lock. All locks will be furnished with two keys, unless otherwise specified.

SEPARATELY MOUNTED LOCK

SB switches are available with a standard lock and key, or with a Kirk key-interlock system. Two keys are furnished with each lock. Check the proper block. If Kirk key interlock is checked, fill out the co-ordination information. Be sure the panel thickness is given. The switch is furnished with the lock for mounting above the switch, as shown under standard mountings, and identified as Lock No.

1. Complete the description "Lock No. 1 locks and key is removable in Pos. \qquad ." If mounting the lock above the switch is not feasible, or when two locks (each locking in a different position) are required, the locks can be mounted to the right, to the left, or below the switch.

To identify the location, the locks are numbers 2, 3 and 4 under "Special Mounting". Fill in the lock number in the description below and the position in which each lock is to lock.

Coordination Information Required for Kirk Interlock Scheme

To ensure a designated key change is furmished only to the customer and equipment assigned, the following information is required:

1. Ultimate customer's name and address. Also the substation or building when required.
2. Purchase order of coordinating locks already placed. If we are the first to place the

Fig. 191. Specification form, optional features
order, so sțate and we will so advise on the purchase order that we will place for the locks.
3. The drawings of any Kirk scheme already submitted or a copy of the drawing. If the key change has already been assigned, as on reorders, specify the key change number.

Be sure this information is complete and correct when placing the order.

(16.) TANDEM SWITCHES

When a switch with more than 16 stages is required, two or more switches can be assembled in tandem, operating with one handle. The switches are normally mounted horizontally, but can also be furnished vertically mounted. A link mechanism is normally furnished when the throw on either side of the center position does not exceed 75 degrees. A gear me chanism is used when the throw exceeds 75 degrees. Show the location of the switches and handle on the sketch provided for up to four switches in tandem. The corresponding
switch numbers on the sketch should also be on the contactarrangement specification form. Draw in the handle to show its location, or specify the switch number on which the handle will be mounted. When more than four switches, or a different arrangement, is required, use a separate sheet showing the proper switch arrangement.

PULL-TO-TURN

If the handle is to turn in the IN position, indicate what positions or positions; if it is not to turn in the IN position, write "none". Fill in the position the handle will be pulled in, and state to what position or positions you will be turning to.

8. PALLADIUM CONTACTS

Check this block if required. Palladium contacts are available for temperature-meter switches (see "Temperature-meter Switches"). If for a special application where some of the contacts are palladium, but not all, specify requirement in this block or on the contact arrangement.

GENERAL ELECTRIC

SPECIFICATION FORM TYPE SBM SWITCHES

Refer to GET-6169D for descriptive information.

GENERAL ELECTRIL
 SPECIFICATION FORM－PART 1 TYPE SB－I，－9 AND－ 10 SWITCHES
 Use GED－3934，Part 2 for special features

ON SB－IO SWITCHES mark lat．stages WITH A DOT．（．）		CONTACT ARRANGEMENT mark＂X＂for closed contact									
CONTACTS handle End ODD EVEN		handle positions（back view）									
－1F－1F											
－1F－1											
－1－－1											
－1F－1F											
－1－+1											
－1F－1 $\frac{1}{1}$											
－1F－1											
－トート 15											
＋r－－ 1											
－1F，－1											
－1F－1F											
－1－－1											
－ト－ト											
－1F－1F											
－1－1F											
，－1，－1F，$\frac{31}{32}$											

CIRCUIT PLATE ENGRAVING	
POS．	ESCUTCHEON ENGRAVING

BOTTOM TOP BOTTOM
terminal location

（CROSS OUT THE ACTION WHICH DOES NOT APPLY）
（SPECIAL FEATURE FORM GED－3934 PT2 MAY BE USED WITH THIS FORM）
General Electric Co．，Meter and Control， 205 Great Valley Parkway，Malvern，PA 19355

GENERAL GELECTRIC

TYPE SB-1, -9 AND - 10 SWITCHES
(SB-1 OR 9)
LCCK IN HANDLE
HANDLE LOCKS AND KEY REMOVABLE IN POSITION
SPECIAL_ $\ldots \ldots$
(SB-1, 9 OR 10)

LOCK NO. _ 1 _ LOCKS AND KEY REMOVABLE IN POS. \qquad LOCK NO. . . LOCKS AND KEY REMOVABLE IN POS. \qquad cóórdínátión in fópmátion réquíréd FOR KIRK INTERLOCK SCHEME

1. ULTIMATE CUSTOMERS NAME \& ADDRESS \qquad

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2. PURCHASE ORDER OF COORDINATING LOCKS
\qquad
\qquad
3. COORDINATING INFO. (KNOWN KEY NO. \& PRINT) \qquad

(SB-1, 9 OR 10)
TANDEM SWITCH
VERTICALLY MOUNTED
HORIZONTALLY MOUNTED
LINK TANOEM (MAX. 75° THROW EITHER SIDE OF CENTER POS.)

GEAR TANDEM

ADD HANDLE TO DESIRED SWITCH AND SW. NO. SW. NO. TO CORRESPOND WITH SW. NO. ON SPECIFICATION FORMP-J_ (COHTACT ARRGIMT. FORM). CROSS OUT THE SWITCH WHICH IS NOT REQUIRED. FOR ADDITIONAL SWITCHES, USE A SEPARATE SHEET SHOWING THE PROPER SWITCH ARRANGEMENT.

(SB-1 OR 9)	
PULL TO TURN	
TURN IN POS._	\square
PULL IN POS.	
(SB-1, 9 OR 10)	
PALLADIUM CONTACTS	\square

CHECK PROPER BLOCK AND COMPLETE REQUIRED INFORMATION. WRITE NONE WHERE APPLICABLE.

GE Meter and Control 205 Great Valley Parkway
Malvern, Pa. 19355

Field Modification Instructions for the Type SBM Control Switch

CASE I-INSPECTING SWITCH ONLY

When the SBM switch is taken apart for inspection purposes only and is to be reassembled without modifications, follow this sequence:

1. Turn handle to vertical (12 o'clock position).
2. Remove handle and mounting screws.
3. Remove screws holding the front plate of positioning chamber.
4. Remove adjustable stops, noting relation of the punch mark on the operating shaft. This punch mark should be pointing towards the $90^{\circ} \mathrm{ccw}$ position (9 o'clock location).
5. Remove the stop spacers and positioning wheel. The balance of the parts in the front part of the chamber should be left intact*.
6. Use a $5 / 16^{\prime \prime}$ wrench to loosen the tie bolts in the rear of the switch. Back off the bolts only as far as necessary to loosen the positioning chamber from the balance of the assembly and remove chamber.
7. Push tie bolts back up against the rear barrier to keep the stages intact.
8. Turn operating shaft so that punch mark is not facing the bottom vertical (6 o'clock) position.
9. Remove the first stage front barrier cover.
10. Read the following before removing cams.
Note: Each stage houses two double-surface cams. The first controls the action of the even number contact while the second cam controls the odd number contact. One cam is distinguished from another by a number (1 to 22) on one surface of the cam.
*On a control switch with a spring return feature there are no parts in the front half of the positioning chamber except the stop cams and a thick spacer. The rear half of this chamber houses the torsion spring. When the chamber is removed from the assembly the spring actuator, torsion spring and spacer will be up against the front barrier plate of the first stage of contacts. These parts should be removed and replaced in order. The balance of the steps for dismantling and reassembly remain the same.

With this number the following letters appear in 45° intervals B-C-D-E-F-G-H. On the reverse side of the cam there are eight letters in 45° intervals as follows: J-K-L-M-N-P-R-S.
11. Note the number of the cams as they are removed, jotting down the letter on the cam which passes over the punch mark on the operating shaft.
The cam must be reassembled on the operating shaft with respect to this letter and punch mark in order to obtain the same contact sequence.
12. The balance of parts in any stage may be removed in any sequence.
13. Unless the operating shaft is to be changed there is no need to remove the tie bolts when following any of the above steps. These bolts should be kept snug against the rear barrier to insure proper reassembly of the switch.
14. When reassembling follow all steps in reverse order.

CASE II-CHANGING CONTACT SEQUENCE

If the SBM switch is to be taken apart and the contact sequence modified, follow the steps outlined in Case I. Omit step \#11 since the cam locations in most cases will have to be changed to obtain the necessary sequence. The following are instructions necessary to select the new cams.
SET UP THE FOLLOWING TABLE

The first line indicates the SBM coding system. The second line corresponds to the eight handle positions of the switch with position \#1 at the 9 o'clock location and the balance of the positions in 45° intervals moving in a clockwise rotation. The contact diagram shown above indicates a sequence for a two-stage four-contact
switch. Referring to the segment on the right, contact \#1 is shown closed in position \#1. Directly above position \#1 is the IBM Code 2. Place this number in the extreme left column of the section marked Cam Code. In the next segment contact \#1 is closed in positions $3,4,5$; directly above these positions are the code number 1, 2 and 4. Their sum is the second digit of the cam code. In the third segment contact \#1 is closed in positions $7 \& 8$, the code numbers above these two positions are $1 \& 2$. Their sum is the third digit of the code number. It can be seen that contact \#2 is only closed in the second segment under positions $3 \& 4$ whose code is $2 \& 4$. There is no contact sequence in segments one and three so the first and last digit of the contact's code number will be zero. The middle digit will be 6 , the sum of codes $2 \& 4$. The same method is used to find the cam code for contact $3 \&$ 4.

Now that the cam codes have been derived, refer to the attached cam code sheets. One of these sheets is for the left-hand even number contacts and the other for the right-hand odd number contacts.

The cam code for contact \#3 is 305. Refer to the Cam Code sheet for odd number contacts. Beside number 305 on cam and position is the listing 14G. This means cam \#14 should be placed on the switch operating shaft so that the letter " G " passes over the punch mark. This will provide the sequence for contact \#3 as shown in the diagram.

For contact \#4 the cam code is 100. Beside this number on the sheet for left-hand even number contacts is the listing 1B. Cam \#1 should be placed on the operating shaft so that the letter " B " passes over the punch mark on the shaft. This will provide the sequence for contact \#4 as shown in the diagram. The same procedure should be followed for contacts \#1 and 2 whose codes are 273 and 060 and whose listings are 5 F and 2 C .

The switch can be now be reassembled by reversing the steps listed in Case 1. Care must be exercised to make sure that the punch mark is returned to 9 o'clock position before placing the stop cams. This automatically
places the handles in the 12 o'clock position and insures a correct sequence for the contacts.

SLIP CAMS

One cam not covered by this sequence is the slip cam for breaker control switches.

This cam is number 22 and can only be mounted on the operating shaft in two locations for proper con-
tact sequence. When a slip cam is required to actuate a sequence as contact \#1 or \#2 in the table below, 22 K is the cam code. When the sequence is to be as shown for contact \#3, the cam code is 22D.

Switches which require a make-before-break (overlapping) sequence require special cams, only when three intermediate steps are required between each handle position. They cannot be modified therefore by using the
code sheets. Requests for changes of this type should be referred back to the factory.

	4	3 FROM		2	WHEN USED 1	
		4	2			
1			X	x		22K
2			X	X	X	22K
3	X	X				22D

SBM SWITCH CAM CODE (ODD NUMBER CONTACTS)

Contact Sequence Number	$\begin{gathered} \text { Cam } \\ \& \\ \text { Position } \end{gathered}$	Contact Sequence Number	$\begin{gathered} \text { Cam } \\ \& \\ \text { Position } \end{gathered}$	Contact Sequence Number	$\begin{gathered} \text { Cam } \\ \& \\ \text { Position } \end{gathered}$	Contac Sequen Number	Cam $\&$ Position	Contact Sequence Number	$\begin{gathered} \text { Cam } \\ \& \\ \& \\ \text { Position } \end{gathered}$	Contact Sequence Number	$\begin{gathered} \text { Cam } \\ e \& \\ \text { Position } \end{gathered}$	Contact Sequenc Number	$\begin{gathered} \text { Cam } \\ \& \\ \text { Position } \end{gathered}$	Contact Sequence Number	$\begin{gathered} \text { Cam } \\ e \\ \& \\ \text { Position } \end{gathered}$
000		040	16	100	1 K	140	21	200	11	240	31	300	$2 K$	340	61
001	15	041	41	101	3K	141	71	201	21	241	10.	301	6 K	341	13H
002	1 R	042	51	102	4 K	142	81	202	3 J	242	111	302	7K	342	14H
003	2 S	043	95	103	105	143	15H	203	$6 J$	243	21H	303	13G	343	6H
004	1 P	044	4 P	104	5K	144	91	204	4)	244	121	304	8 K	344	151
005	35	045	125	105	11k	145	20 E	205	71	245	16 F	305	14G	345	7H
006	28	046	8 R	108	9 R	146	18 E	206	10R	248	17F	308	15 G	346	8 H
007	65	047	15S	107	216	147	9 H	207	$13 F$	247	10 H	307	6G	347	2H
010	IN	050	3N	110	4N	150	101	210	55	250	11 N	310	9 K	350	218
011	45	051	12 N	111	12K	151	16 H	211	$8)$	251	17H	311	15\%	351	108
012	3R	052	11 R	112	12R	152	178	212	111	252	19 F	312	200	352	11 H
013	75	053	20B	113	16E	153	12H	213	14F	253	$11 F$	313	7 G	353	3 H
014	$2{ }^{9}$	054	78	114	8 P	154	15 C	214	9 P	254	20 H	314	18 H	354	9 C
015	10P	055	16 C	115	178	155	12 C	215	15F	255	12F	315	8 G	355	4 H
016	6 R	056	140	116	15R	156	80	218	217	256	110	316	96	356	5 H
017	13E	057	7 E	117	10G	157	4E	217	6 F	257	$3 F$	317	2 G	357	IH
020	1 M	060	2 M	120	3M	160	6M	220	4M	260	7 M	320	10K	360	13A
021	5 M	061	8 M	121	11 M	161	14A	221	95	261	15A	321	21A	361	6A
022	4 R	062	9M	122	12 M	162	15M	222	12 J	262	20 F	322	16G	362	7A
023	85	063	18 F	123	176	163	8A	223	15)	263	9A	323	10 A	363	2A
024	3 P	064	10 M	124	119	164	21 C	224	12 P	264	16A	324	17A	364	10 C
025	115	065	17 C	125	19E	165	11 A	225	20 C	265	12A	325	119	365	3A
026	7 R	066	150	126	20A	166	90	226	160	266	120	326	12G	366	4A
027	14E	067	8 E	127	IIE	167	$5 E$	227	7 F	267	4 F	327	3 G	367	IA
030	2N	070	6N	130	7N	170	13 B	230	8 N	270	148	330	158	370	6 B
031	9N	071	15 N	131	20 G	171	78	231	186	271	88	331	98	371	28
032	10N	072	210	132	16B	172	10D	232	170	272	118	332	128	372	3B
033	15 E	073	9 E	133	12 E	173	48	233	8 F	273	$5 F$	333	4 G	373	18
034	6 P	074	13 C	134	14 C	174	6 C	234	15p	274	75	334	8 C	374	2 C
035	$21 E$	075	10E	135	110	175	3 C	235	9F	275	46	335	5G	375	15
036	130	076	6 D	136	70	176	20	236	10F	276	30	336	40	376	10
037	6 E	077	2 E	137	3 E	177	$1 E$	237	2 F	277	17	337	16	377	
NOIE: When cam code specifies the use of cam 1A, 2A, 3A, etc, the number on the cam should pass ovor the punch mark on the operation shaft since the letter " A " does not appear on the coms.															

SBM SWITCH CAM CODE (EVEN NUMBER CONTACTS)

Contact Sequence Number	$\begin{gathered} \text { Cam } \\ \text { Position } \end{gathered}$	Contact Sequence Number	$\begin{gathered} \text { Cam } \\ 8 \\ \text { Position } \end{gathered}$	Contact Sequence Number	$\begin{gathered} \text { Cam } \\ \& \\ \text { Position } \end{gathered}$	Contact Sequenc Number	$\begin{gathered} \text { Cam } \\ 8 \\ \text { Position } \end{gathered}$	Contact Sequence Number	Cam $\&$ Position	Contact Sequence Number	$\begin{gathered} \text { Cam } \\ 8 \\ 8 \\ \text { Position } \end{gathered}$	Contact Sequence Number	$\begin{array}{cc} \text { Cam } \\ e & \& \\ \text { Position } \end{array}$	Contact Sequence Number	$\begin{gathered} \text { Cam } \\ \text { esition } \\ \text { Posite } \end{gathered}$
000		040	1 C	100	18	140	2 B	200	1A	240	3A	300	2A	340	6A
001	1H	041	4 H	101	3H	141	108	201	2H	241	7H	301	6H	341	13K
002	1 G	042	5 C	102	4 O	142	98	202	3 G	242	116	302	10A	342	21 A
003	2 G	043	8 G	103	7 G	143	15K	203	6G	243	146	303	13G	343	6K
004	1 F	044	4.	104	58	144	8 B	204	47	244	12A	304	9A	344	15A
005	$3 F$	045	12 F	105	11%	145	17H	205	104	245	16F	305	21M	345	101
006	$2 F$	046	9F	108	8 F	146	18C	206	7F	246	20 C	306	15J	346	91
007	$6 F$	047	15F	107	14 F	147	8]	207	13F	247	7J	307	$6 J$	347	2J
010	18	050	3 C	110	48	150	78	210	5A	250	11 A	310	8A	350	14A
011	$4 E$	051	12 C	111	12H	151	16H	211	9 H	251	20E	311	15H	351	71
012	3 E	052	110	112	12 E	152	20 G	212	11E	252	19A	312	17 G	352	11 M
013	1.0 G	053	17 E	113	16 E	153	12 K	213	216	253	11k	313	105	353	3 K
014	2 E	054	10E	114	9E	154	15 N	214	8 E	254	17C	314	188	354	8 M
015	$7 E$	055	160	115	208	155	12 N	215	155	255	125	315	95	355	4 L
016	6 E	056	21 E	116	15 E	156	9N	216	14 E	256	115	316	85	356	55
017	13E	057	10P	117	75	157	45	217	65	257	35	317	25	357	15
020	10	060	2 C	120	38	160	68	220	4A	280	100	320	7A	380	13A
021	50	061	9 C	121	11H	161	218	221	8H	261	15 L	321	14 H	361	61
022	40	062	8 C	122	128	162	158	222	12G	262	17A	322	16G	362	10k
023	9 G	063	180	123	20 D	163	9 K	223	15 G	263	8 K	323	7K	363	2 K
024	3D	064	7 C	124	118	164	14B	224	120	264	16A	324	20 F	364	7 M
025	110	065	20 H	125	198	165	11 N	225	17 F	265	121.	325	111	365	3 L
026	10F	066	15 P	126	170	166	8 N	226	160	268	12P	328	125	366	4 M
027	$21 F$	067	99	127	111	167	5N	227	10R	267	4)	327	3 J	367	11
030	20	070	${ }^{6} \mathrm{C}$	130	100	170	138	230	90	270	21.	330	15 M	370	6 M
031	80	071	156	131	178	171	10 L	231	18A	271	91	331	86	371	2 L
032	70	072	14.	132	168	172	7N	232	20A	272	11 P	332	12 M	372	3 M
033	15R	073	8 P	133	12R	173	4N	233	9R	273	5P	333	4 K	373	IK
034	60	074	13C	134	210	174	6 N	234	15D	274	10M	334	9M	374	2M
035	14 D	075	7 P	135	11 R	175	3 N	235	8 R	275	4 P	335	5R	375	11
036	13D	076	6 P	136	ION	176	2N	236	7 R	276	3 P	336	4 R	376	1 M
037	6R	077	2 P	137	3R	177	IN	237	2R	277	1 P	337	1 R	377	
NOTE: When cam code specifies the use of cam 1A, 2A, 3A, otc., the number on the cam should pass aver the punch mark on the operation shaft since the letter " A " does not oppear on the cams.															

SBM Nomenclature Guide to Unlisted Switches

SBM SWITCH NOMENCLATURE EXPLANATION

DESCRIPTION OF ACTION

MAINTAINED BOTH DIRECTIONS
1A - Positions 1, 2, 3, 4, 5, 6, 7, 8
2A - Positions 1, 3, 5, 7
3A - Positions 2, 4, 6, 8

SPRING RETURN TO POSITION 3 FROM BOTH DIRECTIONS

1S - Positions 2, 4
2S - Positions 1, 5
3S - Positions 1, 5 (feel position 2)
4S - Positions 1,5 (feel position 4)
5 S-Positions 1,5 (feel positions $2 \& 4$)
1F - Pull to lock in position 1 (feel position 2)
$2 F$ - Pull to lock in position 2

SPRING RETURN TO POSITION 3 - FROM CW ONLY

1C - From position 4
2C - From position 5
3C - From position 5, (feel position 4)

SPRING RETURN TO POSITION 3 - CCW ONLY
1W - From position 2
2W - From position 1
3W - From position 1, (feel position 2)
SPRING RETURN TO POSITION 3 FROM CW MAINTAIN POSITION AT CCW
1H - From position 4, maintain position 1, 2
2 H - From position 4, maintain position 1
3H - From position 5, maintain position 2
4H - From position 5, (feel pos. 4), maintain pos. 2
5 H - From position 5, maintain position 1
6 H - From position 5, (feel pos. 4), maintain pos. 1

SPRING RETURN TO POSITION 3 FROM CCW
MAINTAIN POSITION AT CW
1K - From position 2, maintain position 4, 5
2 K - From position 2, maintain position 5
3K - From position 1, maintain position 4
4K - From position 1, (feel pos. 2), maintain pos. 4
5 K - From position 1, maintain position 5
6 K - From position 1, (feel pos. 2), maintain pos. 5

16SB1 or 9 Nomenclature Guide to Unlisted Switches

[^6][^7]†Palladium contacts are available; H1 designates a single-stage switch. H2 a two-stage, up to H16 for a 16 -stage switch.

[^0]: x in all contact diagrams denotes contacts closed

[^1]: x in all contact diagrams denotes contacts closed

[^2]: x in all contact diagrams denotes contacts closed

[^3]: x in oll contact diagrams denotes contacts closed

[^4]: x in all contoct diagrams denotes contacts closed

[^5]: x in all contact diagrams denotes contacts closed

[^6]: 1 S1 = Latching in CW \& CCW positions S2 = Will prevent repeated CCW throw S3 $=$ Will prevent repeated CW throw

[^7]: 11 Al = Switch mounted to the left
 A2 $=$ Switch mounted to the right
 A3 $=$ Switch mounted up
 A4 $=$ Switch mounted down

