

OPERATION AND MAINTENANCE MANUAL

AUTOMATIC
TRANSFER
SWITCH -
DELAYED
TRANSITION
(Mechanically Held)

ZTSDH SERIES
 600 THRU 1200 AMPS

MODEL NUMBER
 SERIAL NUMBER \square

ZENITH CONTROLS, INC., 830 W. 40th St., Chicago, IL 60609 (312)247-6400: FAX. (312)247-7805

IMPORTANT: Model number and serial number of switch must be included with all orders for replacement parts. If possible, also specify line voltages, drawing number and date of installation. When ordering mechanical parts not shown on the parts list, circle the part on the photograph and return with the parts list. When ordering electrical components not shown on the parts list, refer to this part by its legend description in the wiring diagram.
A. POWER PANEL

CABINET DOOR

CONTROLED
D. ATS CONTROL PANEL (SSRCP)

CHART 1
TO POWER PANEL

ATS CONTROL PANEL (SSRCP) STANDARD ITEMS

Jumper	Connects Points	Remove When Accessories Used
J 1	$23,23 \mathrm{~A}$	B 1
J 2	$23 \mathrm{~A}, 23 \mathrm{~B}$	B 2
J 3	$23 \mathrm{~B}, 23 \mathrm{C}$	B 3
J 4	$23 \mathrm{C}, 23 Z$	$\mathrm{JIN}, \mathrm{TS}, \mathrm{CID}$
J 5	$23 Z, 27$	T, YN
J 6	$25,25 Z$	T3, R4
$\mathrm{J7}$	$28,28 Z$	SI, C, C/D
J 8	$28 Z, 29$	PI \& U
J 9	$33 A, 33 Y$	ER1, 2, 3, J1E
$J 10$	$33 Z, 37$	W
$J 11$	$35,35 Z$	R4, W3

Solid State Time Delay

Accessories T, U, W Solid State Timers Adjustable in Seconds, Minutes and Hours (Plug-In Style).

To select a time unit, operate the pushbuttons of the rightmost thumbwheel switch until the desired time unit is shown in window. The time unit can be selected by pushing the plus (+) bottom button or the minus $(-)$ top button. The desired time is specified by operating the three thumbwheel switches in the middle of the front panel.

Close Differential (ARSM) Relay Adjustment

The voltage points at which the relay operates are adjustable. When the relay pulls in, an audible click is noticeable, and the LED will come on.

Setting the Relay:

If the relay should be set with a variable voltage supply (Variac):

1. Turn pick-up control fully clockwise.
2. Turn drop-out control fully counterclockwise.
3. Set Variac pick-up voltage to desired level.
4. Very slowly rotate pick-up adjustment counterclockwise until relay picks up. (LED will energize).
5. Set Variac drop-out voltage to desired level.
6. Very slowly rotate drop-out adjustment clockwise until relay drops out (LED de-energizes).

Verify settings by raising voltage until relay picks up, then lower voltage until relay drops out, making sure that relay operates at desired voltage levels.

VOLTAGE/FREQUENCY SENSOR (VFSM) ADJUSTMENT

The pickup point may be adjusted between 80-95\% of rated voltage by rotating the offset screw located on the back of the relay.

Counter-clockwise rotation increases pickup voltage. Clockwise rotation decreases pickup voltage.

OPERATION:
When the normal line (NL) falls to the preset dropout point, or if any normal phase fails, the nhase relay(s) (adiustable) will drop out disconnecting the CR and signaling the generator to start.

When emergency line (EL) voltage and frequency reach at least 90% of rated value, the VFSM relay is energized. The RT relay is now energized to operate the CCNO relay through the CNO cutout switch causing the main transfer coil CNO to operate. The load is now transferred to the OPEN position. The SNO limit switch operates to disconnect the CCNO relay and CNO transfer coil. The transfer switch is now locked mechanically open. SNO is now activated. This energizes the DW timer. After time setting has lapsed, DW will energize CCE, which will energize main transfer coil CE. The load is now transferred to the emergency line supply. The SE limit switch operates to disconnect the CCE relay and CE main transfer coil. The transfer switch is now locked mechanically in Emergency position.

When the normal line voltage restores to the preset value, the phase relay(s) ($\mathrm{B} 1,2,3$) operate to energize the normal restoration timer T. After the time setting has lapsed, the timer contact closes to energize CR relay. The CCEO relay is now energized through the SN and SEO limit switches, causing the main transfer coil CEO to operate. The load is now transferred back to OPEN position. The SEO limit switch operates to disconnect the CCEO relay and CEO transfer coil. The transfer switch is now locked mechanically open. SEO is now activated, energizing DT timer. After time setting has lapsed, DT will energize CCN which will energize main transfer coil CN. The load is now transferred to the normal line supply. The SN limit switch operates to disconnect the CCN relay and $C N$ main transfer coil. The transfer switch is now locked into normal position.

INSPECTION
CONTACTS - The movable and stationary contacts are a vital part of the ATS and must be kept clean. To inspect the ATS contacts, disconnect all power sources. Examine the contacts.

Any surface deposits must be removed with a clean cloth (DO NOT USE EMERY CLOTH OR A FILE).

After the movable and stationary contacts are wiped clean (no discoloration or deposits), reconnect power source.

CURRENT CARRYING PARTS - An easily detected but abnormal condition is the discoloration of current carrying parts (particularly copper). Discoloration appears as darkened material or finishes. Any discolored parts should be cleaned. WARNING: ANY MAINTENANCE SHOULD ONLY BE DONE WHILE THE POWER IS OFF. If the discoloration persists, contact the factory.

LUBRICATION

The cams of the ATS are lubricated with Super Lube PTFE grease, the gears with Dow Chemicals "Molykote" (321R or GN paste). These lubricants provide adequate lubrication for a clean and properly maintained swithces lifetime. Should debris contaminate the mechanism, clean and apply additional lubricants. Mobiltemp SHC-32 is used on isolating contacts.

MODEL NO: \qquad
SERIAL NO: \qquad
DATE SHIPPED: \qquad
START-UP DATE: \qquad
DRAWINGS SUPPLIED: \qquad
\qquad

TEST AND MAINTENANCE NOTES:

DATE	TESTED	OBSERVATIONS	NOTES

PURPOSE

Zenith automatic transfer switches are used to provide a continuous source of voltage for lighting and power circuits by automatically transferring the lighting or power load from the normal source to an emergency source of voltage when the normal voltage fails or drops in voltage.

This manual is supplied to provide complete information on the operation, installation and maintenance of the ZENITH ZTSDH series mechanically held transfer switch. In addition a complete wiring diagram is provided with each transfer switch. The instruction manual and the wiring diagram should be kept in a safe place to serve as complete reference information on this critically important piece of equipment.

Described in this manual, are the new ZTSDH series, 600 thru 1200 ampere sizes, featuring a new concept in transfer switch design.
For details of operation, accessories, and wiring see wiring diagram and operational sheet supplied with the switch.

WARNING

The power voltage present in this equipment is dangerous to life. When operating or adjusting this equipment with doors open, special care must be taken to avoid contact with terminals carrying this voltage.

CONTACT REPLACEMENT

Contact replacement is usually not necessary for many years on the average transfer switch. When replacement is necessary, all contacts are easily removed. Both the main
contacts and all control contacts are easily visible from the front of the panel, for fast visual inspection.

INSTALLATION

A good installation is as necessary as a good transfer switch. This switch is designed for floor mounting. Floor mounted cabinets must be well braced and protected from damage. Be sure that the cabinet is not mounted directly under any water pipes which may sweat and drip water into the cabinet. Be sure cabinet is fully cleaned of dirt and concrete dust before operation.
Enough room should always be allowed to open the cabinet doors fully, so normal visual inspection of all parts is possible.
Before installing the switch and before energizing the circuits, check the switch for shipping or installation damage.

The following may be used as a test procedure after installation of the transfer switch:

Before connecting the load circuit, make sure normal line contacts are closed, then energize the NL circuit. The phase relays and control relay will be energized. Next, energize the EL circuit. The VFSM relay will be energized. Operate the test switch TS to the test position. The switch will transfer to the EL side. Return the test switch to the auto position. The transfer switch will restore to the NL position. The load may now be connected and the same procedure followed. A periodic test of the switch, under load conditions, is recommended to insure proper operation of the main switch and all accessories.

CHECK LIST FOR START-UP

NORMAL OPERATION		POINTS TO CHECK IF NORMAL OPERATION DOES NOT OCCUR
1	Normal line fails and the engine starts. (This can be simulated with the TEST switch).	If engine generator does not start be sure the relay containing the engine start contacts (marked E) has dropped out and the contacts are closed. Be sure the battery is connected and the control switch on the engine is turned to automatic. If the engine fires but does not start, contact the engine dealer.
2	Engine starts, generator reaches full voltage, switch transfers to emergency voltage.	Check at emergency line terminals of switch to be sure the generator voltare is up to the proper value. Be sure the VFSM relay pulls in. If not, sheck VFSM relay adjustment page 4. Check to see that the RT relay is energized. Check to see that the circuit to the CCNO coil (to open Hormal), then CCE coil (to close Emergency) is complete thru the SE cutout switch.
3	Normal voltage restores and the switch transfers back to normal.	Check to see that the normal voltage has restored to full value. Check to see that the phase relays have pulled in. (See phase relay adjustment pare 4. Check the C? relay to be sure that it is energized and its romal contact is closed. Check to see that the circuit to the CCEO coil (to open Emergency), then CCY: co1l (to close Normal) is complete thru the SN cutout switch.
4	Engine shuts down.	Be sure voltage is present at relay containing E contact and the relay is energized. If timer U is used be sure it times out and operates its end-of-cycle switch.

